
CSCI 0220 Discrete Structures and Probability R. Lewis

Homework 7
Due: Friday, April 5, 2024

All homeworks are due at 11:59 PM on Gradescope.

Please do not include any identifying information about yourself in the
handin, including your Banner ID.

Be sure to fully explain your reasoning and show all work for full credit.

Problem 1

For each of the statements below, determine if it is always true, sometimes true, or
never true. Justify your answers. To justify an “always” or “never” answer, write a
proof; to justify a “sometimes” answer, give one witness that makes the statement
true and one that makes the statement false, explaining these judgments.

For example, the statement

Let a, b : N and suppose a | b. Then the greatest prime factor of b
divides a.

is sometimes true. It is true if a = 6 and b = 12, since 6 | 12 and the greatest prime
factor of 12 is 3, which divides 6. It is false if a = 2 and b = 6, since 2 | 6 but the
greatest prime factor of 6 is 3, which does not divide 2.

a. Let p, q, r, s : N be prime numbers and suppose that pq = rs. Then p = r and
q = s.

b. Let p : N be prime. Then p is relatively prime to every positive natural number
except for p itself.

c. Let a, b, c, n : N and suppose that 3ab ≡ 3ac mod n. Then b ≡ c mod n.

d. Let a, b : N. Then gcd(a, b) = gcd(a, gcd(a, b)).

e. Let a, b : N. Then gcd(1 + a, 1 + b) = 1 + gcd(a, b).

f. Let n : N and suppose n is not divisible by 3. Then n2 ≡ 1 mod 3.

Solution:
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Solution:

a. Sometimes. True if p = r = 2 and q = s = 3; false if p = s = 2 and q = r = 3.

b. Never. p is not relatively prime to 2p because gcd(p, 2p) = p > 1 since primes
are nonunits by definition.

c. Sometimes. True if a = b = c = n = 1 since 3 ≡ 3 (mod 1) and 1 ≡ 1 (mod 1);
false if b = 1 and a = c = n = 3 since 27 ≡ 9 (mod 3) (they’re both congruent
to 0) but 3 ̸≡ 1 (mod 3).

d. Always.

Observe that, by definition, gcd(a, gcd(a, b)) | gcd(a, b). Since gcd(a, b) | b, it
follows by the transitivity of divisibility that gcd(a, gcd(a, b)) | b. Moreover,
definitionally, gcd(a, gcd(a, b)) | a. So gcd(a, gcd(a, b)) is a common divisor of
a and b. But since gcd(a, b) is the greatest common divisor of a and b, we must
have gcd(a, b) ≥ gcd(a, gcd(a, b)).

Furthermore, gcd(a, b) | a by definition and gcd(a, b) | gcd(a, b) trivially. So
gcd(a, b) is a common divisor of a and gcd(a, b). But since gcd(a, gcd(a, b))
is the greatest common divisor of those two values, we must have gcd(a, b) ≤
gcd(a, gcd(a, b)).

So these values are both less than or equal to and greater than or equal to each
other. The only way for these both to occur is if the values are in fact equal.
So gcd(a, b) = gcd(a, gcd(a, b)) as desired.

e. Sometimes. True if a = b = 1 since gcd(1 + 1, 1 + 1) = 2 = 1 + gcd(1, 1); false
if a = 2 and b = 1 since gcd(3, 2) = 1 while 1 + gcd(2, 1) = 1 + 1 = 2.

f. Always. We know n ̸≡ 0 (mod 3) by assumption. So either n ≡ 1 (mod 3),
in which case n2 ≡ 1 (mod 3) and the claim holds; or n ≡ 2 (mod 3), in
which case n2 ≡ 4 ≡ 1 (mod 3) and the claim again holds. Since {0, 1, 2} is a
complete set of representatives mod 3, these cases are exhaustive.
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Problem 2

Normally explorers are not allowed to wander around Jurassic Park unsupervised.
But 10 brave CS22 TAs have left the normal tourist paths. Incredibly, they have
stumbled onto a nest that is full of dinosaur eggs!

a. Using their deep knowledge of dinosaurs from TA camp, they determine that
each egg is either a tyrannosaurus or brontosaurus egg, and there are twice as
many brontosaurus eggs as there are tyrannosaurus eggs.

The TAs decide to divide the tyrannosaurus eggs between themselves such that
TA number n gets tn tyrannosaurus eggs. For fairness and number-theoretic
reasons, they require that for each pair of TAs m and n, 10 does not divide
tm − tn.

Is it possible for them to distribute the brontosaurus eggs with the same re-
striction? Why or why not?

b. The TAs eventually deliver the eggs to Rob, who decides to play a game. He
arranges the eggs into three rows: the first row has 51 eggs, the second has 49,
and the third has 5. In each move of this game, he can combine any two rows
into one row, or he can split a row with 2n eggs into two rows each with n
eggs. (This second move, of course, only works on rows with an even number
of eggs.)

Rob’s goal is to create 105 rows, each with one single egg. Can he achieve this
goal, or will he end the day disappointed? Justify your answer!

HINT:
ThinkaboutRob’spossiblefirstmoves;thenrememberthatwe’vebeentalking
alotaboutgreatestcommondivisors!

Solution:

a. We claim that if n eggs can be divided satisfying the “10 does not divide”
condition, then n ≡ 5 (mod 10). The condition means that all of the ti must
be distinct mod 10. So n =

∑10
i=1 ti ≡ 0 + 1 + 2 + · · ·+ 9 ≡ 5 (mod 10).

This means that the number of t-rex eggs is 5 mod 10. Since there are twice
as many brontosaurus eggs, the number of brontosaurus eggs is 2 · 5 ≡ 0 mod
10. So the brontosaurus eggs cannot be divided satisfying the condition.

b. We will prove this by case analysis on the first move, which must be to combine
two rows, since none of the rows are even. After this first move we are in one
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of three situations with two rows: (100, 5), (51, 54), or (56, 49).

It would be a bad move to combine again—that would end the game. So in
all cases, the next move should be to divide. In each case, the numbers of eggs
in the two rows will have a common divisor that is odd and greater than 1.
Splitting a row in two will preserve this divisor: if k is odd and k | 2n then
k | n. Similarly, combining two rows will preserve this: if k | n1 and k | n2

then k | n1 + n2 (the linear combination property). So in all three cases, there
will always be an odd k > 1 that divides the number of eggs in each row. This
means that no row could possibly have 1 egg, and Rob will be disappointed.
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Problem 3

It’s spring break! Time to introduce a fun new game to play with a friend, while
you’re bored and missing cs22.

On a piece of paper, write down two natural numbers m,n > 0.

The two of you will take turns following this rule: choose two (distinct) numbers
that are written on the paper, and write down the difference of those two numbers.
This should be positive (subtract the smaller one from the bigger one), and you can’t
repeat numbers that are already on the page.

You take the first turn, followed by your friend. Eventually someone will get stuck,
unable to write down a new number. That person loses the game.

a. Prove that every number written down on the page is divisible by gcd(m,n).

b. Prove that all of the (positive) multiples of gcd(m,n) up to max(m,n) must
be written down on the page by the time the game is over.

c. Your friend is very confident: they tell you that they can choose infinitely many
pairs of starting numbers m and n that guarantee them a win. But you can
do the same! Describe how you could choose pairs of numbers that guarantee
you, the first player, will win the game.

Solution:

a. We can formulate this as an induction problem. Let ⟨ai⟩i∈N be the sequence
of numbers written down on the page, with a0 = m, a1 = n, and ai being
the number written down on the (i − 1)th turn. Let the predicate P (k) :=
gcd(m,n) | ak. We will show that P (k) holds for all k ∈ N by strong induction.

Base Cases: We consider k = 0 and k = 1. We have gcd(m,n) | m = a0 and
gcd(m,n) | n = a1 by the definition of GCD. So P (0) and P (1) hold.

Inductive Step: Fix some k ∈ N and suppose as our inductive hypothesis
that for all j < k, we have P (j). We want to show P (k).

By the rules of the game, we know that ak = ai − aj where ai and aj are
previously-written numbers, i.e., where i, j < k. By inductive hypothesis,
gcd(m,n) | ai and gcd(m,n) | aj. So we can write ai = qi gcd(m,n) and
aj = qj gcd(m,n) for some qi, qj ∈ Z. But then we can write

ak = ai − aj = qi gcd(m,n)− qj gcd(m,n) = (qi − qj) gcd(m,n)

so that (since qi − qj ∈ Z) we have gcd(m,n) | ak, as desired.
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Since we have shown P (0), P (1), and ∀j ∈ N, (∀i ∈ N, i < j → P (i)) → P (j),
we have P (k) for all k ∈ N by strong induction.

b. Without loss of generality, suppose m > n. Let s be the smallest number
written on the page at the end of the game. It suffices for us to show that
s = gcd(m,n). If we can do this, we’re done, since m − s, m − 2s, etc. will
all be on the page. Since s | m, the lowest item in this list will be s itself, and
thus this list is equivalently s, 2s, 3s, . . . , m.

By the division theorem, we can write m = qs + r for some q, r ∈ Z with
0 ≤ r < s. So r = m − qs. Since r < s and s is the smallest number on the
page, r itself cannot be written on the page. But m− s, m− 2s, . . . all can be;
the only way that m − qs could be ruled out is if it is 0. So r = 0. We thus
have m = qs, so s | m.

A symmetric argument shows s | n. So s ≤ gcd(m,n) by the definition of
GCD. But we also know that s is a multiple of gcd(m,n) by part (a), so in
fact we must have s = gcd(m,n). And we just showed that all multiples of
s = gcd(m,n) up to max(m,n) = m are on the board.

c. By part (a), only positive multiples of gcd(m,n) are written down. (Positivity
is required by the fact that we choose distinct numbers at each turn.) By part
(b), every multiple of gcd(m,n) up to max(m,n) is written down. So we can
conclude that the numbers written down in a game are all and only the positive
multiples of gcd(m,n) less than or equal to max(m,n). If there are an even
number of such multiples, the person who goes second wins; if there are an odd
number, the person who goes first wins. So we simply need to generate values
m and n such that there are an odd number of such multiples, i.e., such that
max(m,n)
gcd(m,n)

is odd.

There are many possible strategies for doing this: one such strategy is to pick
m > n ≥ 2 such that m is prime; then gcd(m,n) = 1 and max(m,n) = m, so
our quotient of interest is odd because m, being a prime greater than 2, must
be.
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Problem 4 (Mind Bender — Extra Credit)

Fix a value k ∈ N+.

A t-rex and a kotasaurus are playing a game that involves hopping around a circular
track of lily pads.1 At the start, they stand on the same lily pad. Then, every second,
the slow t-rex jumps one lily pad clockwise, while the swift kotasaurus jumps k lily
pads clockwise. They keep hopping until they once again end up on the same lily
pad as each other (regardless of whether it is the lily pad on which they started).

If there are n lily pads, where n is a positive natural number, determine, with proof,
the number of seconds it will take for the t-rex and kotasaurus to finish their game.

You may cite without proof the coprime divisibility lemma: for any integers a, b, and
c, if a | bc and gcd(a, b) = 1, then a | c.

As an example, here’s how the game would go on a track of four lily pads if the
kotasaurus can jump two lily pads per second (t is the number of seconds elapsed,
and T represents the t-rex and K the kotasaurus):

T,K

t = 0

T

K

t = 1

K

T

t = 2

K

T

t = 3

T,K

t = 4

1These are some very resilient lily pads.
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HINT:OnepossibleapproachtothisprobleminvolvesprovingLemma1belowand
usingLemma1toproveLemma2:

Lemma1:Foranyintegersnandk,wehavegcd(n
gcd(n,k),

k
gcd(n,k))=1.

Lemma2:Letnbeapositivenaturalnumber.Fixanintegerk.Ifs∈Zisa
solutiontothecongruencekx≡0(modn),then

n
gcd(n,k)|s.

Solution:

We first prove the two recommended lemmas, then prove the main claim. Note that
by “Bézout’s Lemma” we mean Corollary 8.3 from the course text (which was also
presented in lecture).

(i) We first prove Lemma 1. Let n and k be integers.

Note that by the backward direction of Bézout’s Lemma, there exist integer
solutions to

nx+ ky = gcd(n, k),

since gcd(n, k) | gcd(n, k) trivially. Dividing through by gcd(n, k), we find that
the same x and y are integer solutions to

n

gcd(n, k)
x+

k

gcd(n, k)
y = 1.

Since such solutions exist, it follows by the forward direction of Bézout’s Lemma

that gcd
(

n
gcd(n,k)

, k
gcd(n,k)

)
| 1. But the only positive integer divisor of 1 is itself,

so we must have gcd
(

n
gcd(n,k)

, k
gcd(n,k)

)
= 1, as desired.

(ii) We now prove Lemma 2. Fix a positive modulus n ∈ N+ and a value k ∈ Z.
Let s ∈ Z be a solution to kx ≡ 0 (mod n). So we have that ks ≡ 0 (mod n),
and thus by the definition of congruence that n | ks. By the definition of
divisibility, there thus exists some c ∈ Z such that nc = ks.

Observe that k = k
gcd(n,k)

· gcd(n, k), by which the preceding becomes

nc =
k

gcd(n, k)
· gcd(n, k)s.

We divide through by gcd(n, k) (which is nonzero by definition), noting that
n

gcd(n,k)
is an integer:

n

gcd(n, k)
· c = k

gcd(n, k)
· s.
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By the definition of divisibility, we therefore have that n
gcd(n,k)

| k
gcd(n,k)

· s.

Since gcd
(

n
gcd(n,k)

, k
gcd(n,k)

)
= 1 by Lemma 1, it then follows by the coprime-

divisibility lemma that n
gcd(n,k)

| s, as desired.

(iii) Now we proceed to the main claim. Label the lily pads 0 to n− 1 starting at
the lily pad on which the dinosaurs start. Observe that the t-rex will be on lily
pad tmodn after t seconds, while the kotasaurus will be on lily pad ktmodn
after t seconds. We thus want to find the smallest nonzero value of t for which
t ≡ kt (mod n). Subtracting through by t and factoring, this is equivalently
t(k − 1) ≡ 0 (mod n).

By Lemma 2, we know that any nonzero solution t = s to this congruence
is such that n

gcd(n,k−1)
| s, so in particular (since both values are nonzero)

n
gcd(n,k−1)

≤ s. Moreover, observe that n
gcd(n,k−1)

is itself a solution to this
congruence:

n

gcd(n, k − 1)
· (k − 1) ≡ n · k − 1

gcd(n, k − 1)

≡ 0 · k − 1

gcd(n, k − 1)

≡ 0 (mod n)

since k−1
gcd(n,k−1)

is an integer.

So we see that k−1
gcd(n,k−1)

is both a lower bound on any nonzero solution and
is itself a solution to the congruence. Therefore, we conclude that it must be
the minimal nonzero solution. So the kotasaurus and t-rex will reunite after

k−1
gcd(n,k−1)

seconds.
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