
CSCI 0220 Discrete Structures and Probability R. Lewis

Homework 10
Due: Friday, April 26, 2024

All homeworks are due at 11:59 PM on Gradescope.

Please do not include any identifying information about yourself in the
handin, including your Banner ID.

Be sure to fully explain your reasoning and show all work for full credit.

Problem 1

You have five tickets and want to play a carnival game, which costs 1 ticket to play.
In the game, there is a 75% chance that nothing will happen, and you will lose your
ticket, but there is a 25% chance that you will be given your ticket back and also
receive an additional ticket. If you are left with zero tickets, you can no longer play
the game.

a. What is the expected value for the number of times you will play the game?

b. You have enough time to play the game 10 times. What is the probability that
you still have tickets at the end of 10 plays?

c. Assume that you have to decide ahead of time how many times to play. You
want to have at least a 75% chance of having at least one ticket at the end.
What is the maximum number of times you can play?

Solution:

a. During a given turn, you will on average end up with a net gain of 0.75∗(−1)+
0.25 ∗ 1 = −0.5 tickets. Thus, it will take 5/0.5 = 10 turns on average to lose
every ticket.

b. One way to solve this is to look at the probability that you won’t have any
tickets at the end of 10 plays.

The probability that we are out on 5 – that is, that we lose a ticket 5 rounds
in a row – is (.75)5 = 0.237.

We will not be out on 6 because in order to lose the game, the number of
rounds where we have lost a ticket has to be exactly 5 greater than the number
of rounds where we have won a ticket. Therefore, we can only lose the game
on an even-numbered turn.
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The probability that we are out on 7 is (.75)6 ∗ (.25)1 ∗ 5 = 0.222. (We need
one win and six losses, and there are five possibilities for where the one win
occurs, because if we lose the first five rounds that is already taken care of by
the above case.)

To lose on round 9, we need to have two wins and seven losses. Furthermore,
both of the wins must come in the first 7 rounds; if one of the wins occurs
afterwards, we would have one win and six losses in the first 7 rounds and
we would have already lost. Also, the two wins cannot occur in the sixth and
seventh round, because then we would have lost after the fifth round. Therefore,
the number of ways to lose in round 9, and not earlier, is (.75)7 ∗ (.25)2 ∗ (

(
7
2

)
−

1) = (.75)7 ∗ (.25)2 ∗ 20 = 0.167.

The probability that we will still have tickets at the end of 10 plays is 1 −
0.237− 0.222− 0.167 = 0.373 (0.374 if you rounded after each part).

c. We can use our calculations from the previous problem. We saw that the chance
of having a ticket after 5 or 6 rounds is greater than 75%, but the chance of
having a ticket after 7 rounds is less than 75%, so the maximum number of
times we can play is 6.
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Problem 2

Teddy the T-Rex and Valerie the Velociraptor are playing Rock-Paper-Scissors with
the normal rules: each player chooses one of the three options without knowing their
opponent’s choice. Rock beats scissors, scissors beats paper, paper beats rock, and
if both choose the same option the round is a draw.

Teddy is scared of rocks, so Teddy never plays Rock. Teddy plays Paper with 1
3

probability and Scissors with 2
3
probability. Knowing this, Valerie plays Rock with

probability 1
2
(to beat Teddy’s frequent Scissors), Paper with probability 1

4
, and

Scissors with probability 1
4
.

If they draw, they will play again until someone wins.

a. What is the probability that Valerie wins?

HINT:Hint:LettheprobabilitythatValeriewinsbep.Canyoucomeup
withanequationinvolvingp?

b. Teddy proposes that they play multiple rounds (with the same rules and proba-
bilities). The first to 3 rounds wins, but they must win by a 2-point advantage,
otherwise they will ‘deuce’ and keep on playing until someone attains a 2-round
advantage. What is the probability that Valerie wins now?

HINT:Hint:First,whatistheprobabilitythatValeriewinsfromadeuce?

c. Valerie knows that Teddy’s moves are all independent. What new strategy
could she use to maximize her probability of winning the game in part (b)?

Solution:

a.
Teddy Odds 0 1/3 1/3

Valerie Odds Rock Paper Scissors
2/4 Rock 0 2/12 4/12
1/4 Paper 0 1/12 2/12
1/4 Scissors 0 1/12 2/12

Ties cause Teddy and Valerie to play again and can be ’removed’ from the
event space, so looking at events that end in either a win or loss for Valerie,
we can see that she has a 5/9 chance to win.

More rigorously, letting V be the event of Valerie’s victory and T be the event
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of a tie in the first round, we can write

Pr[V ] = Pr[V ∩ T ] + Pr[V ∩ T c] = Pr[V | T ]Pr[T ] + Pr[V ∩ T c].

We have that Pr[V ∩T c] is the probability of Valerie winning in the first round,
which happens in the scissors–paper and rock–scissors scenarios, which occur
with probability 1

2
· 2
3
+ 1

4
· 1
3
= 5

12
. The probability of a tie Pr[T ] is the probability

that they both throw scissors or both throw paper in the first round, which is
3
12
. By the cyclic nature of the game, we have Pr[V | T ] = Pr[V ]. Substituting

these values into the above, and letting p = Pr[V ], we obtain:

p =
3

12
p+

5

12
12p = 3p+ 5

9p = 5

p =
5

9

b. There are 5 outcomes to this game: Valerie wins 3-0, Valerie wins 3-1, Teddy
wins 0-3, Teddy wins 1-3, or Teddy and Valerie ’deuce’ at 2-2, in which case the
odds need to be calculated that Valerie wins from a deuce. In a deuce, there
are 3 outcomes: Valerie scores 2 points and wins, Teddy scores 2 points and
wins, or Valerie and Teddy each score one point, bringing the score to another
deuce. With all that in mind, the following graph can be constructed to find
the probabilities of all of these outcomes:
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The probability that Valerie wins from a deuce is 25
41

(subtract the 40 from the
event space or you can use the same equation setup from part a). Then, the
odds that Valerie wins is equal to:
5
9

3
+ 3(5

9
)3(4

9
) +

(
4
2

)
(5
9
)2(4

9
)2)(25

41
) = 18625

29889
≈ 0.623

c. If Valerie only plays scissors, Teddy will only either play paper or scissors; then,
Valerie can only either win or draw. Thus, Valerie will win every time.
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Problem 3

Way back in the day, we talked about conjunctive normal form (CNF) for proposi-
tional formulas. We define a literal to be either a propositional letter (for example:
p, q, . . . ) or the negation of a propositional letter (for example: ¬p, ¬r, . . . ). A
clause is a sequence of literals joined by ∨, with no propositional letter appearing
more than once. A formula is in CNF if it is a sequence of clauses joined by ∧: for
example, (p ∨ ¬q ∨ r) ∧ (¬p ∨ ¬s) ∧ (q ∨ s).

In this problem we’ll expand on this idea. A k-clause is a clause with exactly k
literals. Let C = (c1, . . . , cn) be a sequence of n > 0 distinct k-clauses. Let V be
the set of propositional letters that appear in the clauses in C. The clauses do not
necessarily contain the same propositional letters.

For example: let k = 3, n = 4, and C = (p∨¬q∨r, p∨¬s∨t, ¬p∨s∨t, p∨r∨¬s).
Then V = {p, q, r, s, t}.

We will randomly assign true/false values to the propositional letters in V , with each
value equally likely for each variable.

a. In terms of k and n, what is the smallest possible value for |V |? What is the
largest possible value? Justify your answers.

(Note: you may assume that n ≤ k! · 2k.)
b. Under the random assignment of truth values to letters, what is the probability

that cn is true?

c. What is the expected number of true k-clauses in C?

d. If we connect the clauses in C together with ∧s, we get a formula in CNF.
Using your answer to part c., prove that this CNF formula must be satisfiable
when n < 2k.

HINT:Arandomvariablecannotalwaysbelessthanitsexpectation—why
not?

Solution:

a. |V | is minimized if all clauses in C contain the same letters, and each one
contains k letters, so |V | ≥ k. |V | is maximized if all n clauses contain different
letters, so |V | ≤ nk.

b. cn is true if at least one of its k literals is true. The probability of any literal
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being false is 1
2
and is independent of the probabilities of any of the other literals

being false. So we can use the product rule to compute that the probability of
all k literals being false is 1

2k
. The event we’re interested in, at least one literal

being true, is the complement of this event, and so its probability is 1− 1
2k
.

c. Let Ii be the indicator random variable that returns 1 if ci is true and 0 oth-
erwise. We want to compute E[

∑n
i=1 Ii]. By linearity of expectation this is∑n

i=1 E[Ii], and by the previous part, E[Ii] = 1 − 1
2k

for each i. So we expect
n(1− 1

2k
) true clauses.

d. We first prove the lemma suggested in the hint: for any random variable R
over a probability space Ω, there is some ω ∈ Ω with R(ω) ≥ E[R]. Suppose
otherwise; then

E[R] =
∑
ω∈Ω

R(ω)Pr[ω]

<
∑
ω∈Ω

E[R]Pr[ω]

= E[R]
∑
ω∈Ω

Pr[ω]

= E[R]

which cannot be.

Now suppose n < 2k and let R =
∑n

i=1 Ii. By our lemma, there is some
truth assignment ω that makes at least E(R) clauses true. If we can show that
E(R) > n − 1, we are done: then ω must make at least n clauses (i.e. all of
them) true, and so ω is a satisfying assignment.

So our goal becomes to show that E(R) > n − 1. By part c. we have that
E[R] = n(1− 1

2k
). Since 0 < n < 2k, we have that 1

n
> 1

2k
, and thus 1− 1

n
< 1− 1

2k
.

So

E[R] = n(1− 1

2k
)

> n(1− 1

n
)

= n− 1

as desired.
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Problem 4 (Mind Bender — Extra Credit)

To address the challenge of distinguishing between legitimate emails and spam, vari-
ous techniques have been developed, the first of which is was known as a Naive Bayes
classifier. Naive Bayes is a probabilistic algorithm commonly used in machine learn-
ing for classification tasks, including spam detection. It leverages the probability of
observing certain features (such as words or phrases) in different classes (e.g., normal
messages versus spam) to make predictions about the class of new instances.

In this context, the provided data serves as an example illustrating the application
of Naive Bayes in spam email detection. The table presents counts of specific words
(“Dear,” “Friend,” “Lunch,” and “Money”) in both normal and spam emails. These
counts are used to calculate the probabilities of encountering each word in each class,
forming the foundation for the Naive Bayes classifier’s decision-making process.

”Dear” ”Friend” ”Lunch” ”Money” Total
Normal Emails 8 5 3 1 17
Spam Emails 2 1 0 4 7
Total 10 6 3 5 24

Naive Bayes is a simple probabilistic classifier based on Bayes’ theorem with strong
independence assumptions between the features. Here’s a quick explanation of how
it works using the provided equation for the case with multiple features (our case):

Pr(A|B1, B2, . . . , Bn) =

∏n
i=1 Pr(Bi|A) · Pr(A)∏n

i=1 Pr(Bi)
∝

n∏
i=1

Pr(Bi|A) · Pr(A)

Naive Bayes predicts the class of a given data point by calculating the probabilities
of each class given the features and selecting the class with the highest probability.
Despite its simplicity and strong assumptions, Naive Bayes often performs well in
practice, especially for text classification and spam filtering tasks.

e. Calculate the conditional probabilies of each word appearing, first given that
the email is either normal and then given that the email is spam.

f. Suppose we have just received an email that reads “Dear Friend”. Use the
Naive Bayes algorithm to calculate the relative probability that the email is
normal and spam, then classify the email.

g. You just received another email that reads “Lunch Money Money Money”.
Do the same process as before to calculate the relative probability that the
email is normal and spam, then classify the email. Notice anything off? (This
email really feels spammy. . . ) Can you come up with a method to change the
algorithm to avoid this?
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h. Let’s discuss the implications of the naive independence assumption in Naive
Bayes classifiers used for spam detection.

i) What are the potential consequences of misclassifications due to this as-
sumption for users and businesses? Consider both false positives (legitimate
emails classified as spam) and false negatives (spam emails classified as legiti-
mate.

ii) Consider scenarios where the independence assumption might lead to
ethical concerns. For instance, could this assumption result in biased outcomes
against certain groups or individuals?

iii) Propose methods to mitigate the limitations posed by the independence
assumption in Naive Bayes classifiers.

Solution:

a. Let N be the event that an email is normal and let S be the event that an email
is spam.

We will denote the event of an email containing a word ω as “ω”.

Pr(“Dear”|N) =
8

17
= 0.47

Pr(“Friend”|N) =
5

17
= 0.29

Pr(“Lunch”|N) =
3

17
= 0.18

Pr(“Money”|N) =
1

17
= 0.06

Pr(“Dear”|S) = 2

7
= 0.29

Pr(“Friend”|S) = 1

7
= 0.14

Pr(“Lunch”|S) = 0

7
= 0

Pr(“Money”|S) = 4

7
= 0.57
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b.
Pr(N |“Dear Friend”) ∝ Pr(N) · Pr(“Dear”|N) · Pr(“Friend”|N)

= ×0.47× 0.29 = 0.097

Pr(S|“Dear Friend”) ∝ Pr(S) · Pr(“Dear”|S) · Pr(“Friend”|S)

=
7

24
× 0.29× 0.14 = 0.012

Pr(N |“Dear Friend”) > Pr(S|“Dear Friend”)

“Dear Friend” is classified as a normal email!

c.

Pr(N |“Lunch Money Money Money Money”) ∝ Pr(N) · Pr(“Lunch”|N) · Pr(“Money”|N)4

=
17

24
× 0.18× 0.064 = 0.00002

Pr(S|“Lunch Money Money Money Money”) ∝ Pr(S) · Pr(“Lunch”|S) · Pr(“Money”|S)4

=
7

24
× 0.0× 0.574 = 0

Pr(N |“Lunch Money Money Money Money”) > Pr(S|“Lunch Money Money Money Money”)

“Lunch Money Money Money Money” is classified as a normal email!

But we clearly can see that this should be a Spam email. The fact that we
have no sample data of a spam email with “lunch”.

What Naive Bayes does to account for this is that add 1 to each piece of data
point so none of them are 0.

”Dear” ”Friend” ”Lunch” ”Money” Total
Normal Emails 9 6 4 2 21
Spam Emails 3 2 1 5 11
Total 12 8 5 7 32

This changes

the result to:

Pr(N |“Lunch Money Money Money Money”) ∝ Pr(N) · Pr(“Lunch”|N) · Pr(“Money”|N)4

=
21

32
× 4

21
×
(

2

21

)4

= 0.00001
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Pr(S|“Lunch Money Money Money Money”) ∝ Pr(S) · Pr(“Lunch”|S) · Pr(“Money”|S)4

=
11

32
× 1

11
×
(

5

11

)4

= 0.00122

Pr(N |“Lunch Money Money Money Money”) < Pr(S|“Lunch Money Money Money Money”)

“Lunch Money Money Money Money” is classified as a spam email!
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