
CSCI 0220 Discrete Structures and Probability Lewis

Encryption and Intro to Counting

Recitation 7

Introduction to Counting

The Product Rule

Given finite sets S1, S2, ..., Sn, the product rule tells us that

|S1 × S2 × ...× Sn| = |S1| · |S2| · . . . · |Sn|.

This rule is often useful when we are doing counting and what we are counting comes
from some number of independent choices. For instance, when picking an outfit for
the day, say you have 4 shirts, 3 pants, and 2 pairs of shoes to choose from. We can
think of an outfit as a sequence (shirt, pant, shoe), so to find the total number of
outfits, we multiply the number of choices we can make for each position, 4·3·2 = 24.

Even if our choices depend on each other, we can still sometimes use this concept.
For instance, let’s say that for each of our 4 shirts, one of our 3 pairs of pants looks
terrible with it, so we don’t want to wear those pants if we’re wearing that shirt.
Then, we still have 4 choices for our shirt, but having made that choice, we now only
have 2 pants to choose from. We still have 2 shoe options. So, our total number of
outfit choices is 4 · 2 · 2 = 16.

Task 1

a. Suppose we go to the sandwich shop, and we want to order a combo special.
The combo special includes a sandwich, and side, and a drink.

There are 5 different kinds of sandwiches, 6 different kinds of sides, and 8
different kinds of drinks. How many different ways could we order a combo
special, and why?

b. When we first talked about functions, these functions only took in one input.
Since then, we’ve seen propositions, which are functions that can take in more
than one input! In general, functions can take in one or more inputs.

Note that, if the function takes in more than one input, say n inputs, we can
think of it taking in one input, where each input is a tuple of length n.
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i. Consider a function of 3 inputs, where each input value can be 0, 1, 2, or
3. If we think about this function as a function of one input, how many
possible inputs does it have?

ii. Consider a function with the same input as described above. Its output
for each input is either 0 or 1. How many unique functions are there?

Hint: Two functions are identical if every input leads to the same output.

iii. Optional: Consider functions of 2 inputs, where each input can take on
either 0 or 1 and outputs either 0 or 1, but the order of the inputs does not
affect that output of the function. For example, f(x, y) could be (x ∧ y).
How many possible such functions are there?
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Permutations and Counting Subsets

A permutation of a set A is an ordered list of the elements of A.

Let |A| = n. Let’s say we want a permutation of k elements of A, where k ≤ n. We
could make such a permutation by picking one of n elements for the first position,
n−1 elements for the second, etc, getting us n∗(n−1)∗ ...∗(n−k+1) permutations.
We can also write this quantity

n!

(n− k)!
.

How could we have gotten that same result in a different way? Well, we could have
made all n! permutations of A, and then grouped those based on the ordering of the
first k elements. Each ordering of k elements has (n− k)! possibilities for the order
of the elements that follow it, hence we divide by (n− k)!.

Suppose we want to know the number of subsets of size k of a set of size n. The
general formula for this value, called

(
n
k

)
is

n!

(n− k)!k!
.

Why? First, we can think of the permutations of length k of elements of A, which
there are n!

(n−k)!
of. Then, we can group these with the other permutations that have

the same elements but in a different order, and divide our count by the number in
each group. How big is each group? For any set of k elements, there are k! ways to
order them. So, we divide by k!.

Try it out with a small example set to make sure it makes sense to you—perhaps
with the number of ways to pick 2 astronauts out of a crew of 9?

Task 2

Count the size of each set, and sort them from largest to smallest.

a. The number of permutations of all the letters in the alphabet.

b. The number of subsets of size 6 of the letters of the English alphabet (one such
subset is {a, b, c, d, e, f}).

c. The number of 6 letter words made of non-repeating letters (one such 6-letter
word is “abcdef”).

d. The number of (any sized) subsets of the set of the letters in the English
alphabet.
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e. The number of subsets of size 20 of the letters of the alphabet.

a.

b.

c.

d.

e.

Sorting:

Task 3

Consider a string of size n ≥ 2, S = s1s2...sn, where each si is a 1–9 digit. For
each of the following conditions, find the number N of such strings that satisfy the
condition, and prove your answer.

a. Only x types of digits are used, where 1 ≤ x ≤ 9.

b. No two consecutive digits are the same.

c. Optional: The sum of any k consecutive digits is the same, where 1 ≤ k ≤ n.

d. Optional: The product of any set of k consecutive digits is the same, where
1 ≤ k ≤ n.

Checkpoint 1 - Call a TA over!
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Counting Arguments

A counting argument shows that the LHS (lefthand side) and the RHS (righthand
side) of some equation count the same thing. Instead of using algebraic manipulation,
we explain why both sides enumerate the elements of some set, just in different ways.

For instance, consider the following identity.(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)

Let S be a set with n elements.

• The LHS counts the number of ways to form a subset of S size k.

• The RHS also counts the number of subsets of size k. It partitions it into two
parts:

– k-sized subsets with a fixed element x. Since we already know x is in
the subset, so we just want to pick k − 1 more elements from the n − 1
remaining elements.

– k-sized subsets without x. We know we can’t pick x for our subsets, so
we just choose k elements from n− 1 other elements in S.

Task 4

Use counting arguments to prove the following identities:

a. (
n

k

)
=

(
n

n− k

)

b.
n∑

k=0

(
n

k

)
= 2n
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c. Optional: (
n

m

)(
m

k

)
=

(
n

k

)(
n− k

m− k

)
Hint: Try this with small numbers where k < m < n.

Task 5

Below is a table of counting problems involving putting k balls in n distinct bins,
and seven expressions. Match each problem with its solution.

No restrictions At most 1 ball per bin At least 1 ball per bin
assume k ≤ n assume k ≥ n

Identical balls 1○ 3○ 5○ Optional

Distinct balls 2○ 4○ 6○ Optional

A B C D E F G(
n
k

)
nk

(
k−1
n−1

)
n!

(n−k)!

(
k+n−1

k

)
nk −

∑n−1
i=1

(
n
i

)
(n− i)k(−1)i+1 n!

(
k
n

)
nk−n

1.

2.

3.

4.

5.

6.

Checkpoint 2 - Call a TA over!
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Inclusion/Exclusion

Say we have two sets, A and B, and we want to know how many elements there are
in their union, A ∪ B. If A and B have no elements in common, we can compute
this just by adding the cardinality of each, |A| + |B|. However, this approach will
not work in general.

For instance, if A = {1, 2} and B = {1, 3}, then A ∪B = {1, 2, 3}. |A ∪B| = 3, but
|A|+ |B| = 2 + 2 = 4. The problem is that we’ve double counted the elements that
are in both A and B, that is, element 1. To fix this problem, we should subtract
|A ∩B|.

The resulting Inclusion/Exclusion property for two sets is:

|A ∪B| = |A|+ |B| − |A ∩B|.

Let’s try generalizing this idea to three sets, A, B, and C!
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If we tried adding |A| + |B| + |C|, which regions would we double count? Which
regions would we triple count?

As it turns out, the final formula for |A∪B ∪C| is the following. Convince yourself
that it works!

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |B ∩ C| − |A ∩ C|+ |A ∩B ∩ C|.

Going further, we can repeat this process for any number of sets, alternating between
adding and subtracting the sizes of sets.

Task 6

a. Let S = {1, 2, 3, 4, 5}.

i. How many permutations of S contain the sequence 24?

ii. How many permutations of S contain the sequence 52?

b. Let X and Y be sets such that |X| = 8 and Y = {a, b, c}.

i. How many functions from X → Y do not map to a?

ii. How many functions from X → Y do not map to a and also do not map
to b?

iii. How many functions from X → Y are not surjective?

Hint: A function is not surjective if nothing maps to a, nothing maps to
b, or nothing maps to c.

8



CSCI 0220 Recitation 7 April 4, 2024

The Pigeonhole Principle

Let’s say we have n pigeons who are trying to fit in n− 1 holes.

It isn’t possible for each pigeon to get its own hole: at least two of them are going
to have to share. It could be the case that they are all in the same hole, or, like the
picture above, all but 2 pigeons get their own hole, or anything in between.

This is the Pigeonhole Principle: in general, if we are assigning n objects to m
categories, where n > m, there is at least one category that has more than one
object assigned to it.

Solve the following problems using the Pigeonhole Principle:

Task 7

c. Celeste is pulling socks out of her drawer. She only has four types of socks:
solid, striped, polka-dotted, and ones with planets on them. What is the
minimum number of socks Celeste should pull out to ensure she has a pair?

d. There are n > 2 astronauts having a party on Mars. Throughout the night,
they dance with each other in pairs.

i. The minimum number of total dance partners someone can have is 0
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(they didn’t dance with anyone). What is the maximum number of dance
partners one can have?

ii. Prove that at least 2 astronauts have the same number of dance partners
by the end of the night. (Come back to this question later if you get
stuck.)

e. Suppose S is a set of n + 1 integers. Prove that there exist distinct a, b ∈ S
such that a− b is a multiple of n.

f. Optional: Given any 5 points inside a square with side length 2, there is always
a pair whose distance apart is at most square root of 2.

Checkpoint 3 - Call a TA over!
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Encryption

A First Look at Encryption

Think back to the first time a teacher caught you passing a note in class: Wouldn’t it
have been cool if that note looked like complete nonsense to your teacher but made
sense to you and your friend?

The purpose of encryption is to allow people to communicate securely over some
medium. Without secure cryptosystems (RSA, for example), we wouldn’t be able
to purchase goods on the web without the fear of someone stealing your credit card
information.

Suppose that Tim and Peet want to send secret messages to each other. They decide
to replace letters with their order in the alphabet (that is, A = 1, B = 2, etc.). Note
that Z can be either 26 or 0.

They agree on the following encryption and decryption functions:

en(x) = rem(3x, 26)

de(m) = rem(9m, 26)

Task 8

a. Tim sends Peet their next meeting place with the encrypted message (22, 10, 11, 8, 19).
Where are they meeting? You can use a calculator such as Wolfram Alpha.

b. Now, you try encrypting a four-letter word of your choosing and then decrypt
it to see if it’s the same message.

c. Why does Tim and Peet’s encryption scheme work for this 26 character alpha-
bet, that is, why can any encrypted digit be recovered exactly by the decryption
process?

Hint: What is the relationship between 3, 9, and 26?

d. Optional: Would this scheme work if the modulus was 23? What about 29?
Assume you can change the other constants in the encryption and decryption
functions.
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RSA Encryption

Tim and Peet realize that their encryption scheme is nicely simple, but is altogether
too insecure. They opt instead to use RSA encryption to send notes to each other
in class. Recall that the RSA encryption algorithm works as follows:

1. Choose two primes p, q.

2. Calculate n = pq. We can publish n publicly while keeping p, q private because
factorization is a hard problem.

3. Calculate ϕ(n) = (p− 1)(q − 1).

4. Choose some 1 < e < ϕ(n) such that gcd(e, ϕ(n)) = 1.

5. Find a multiplicative inverse d for e such that de ≡ 1 (mod ϕ(n)). A multi-
plicative inverse has to exist because e is defined to be relatively prime to the
modulus.

6. Publish n (the modulus) and e (the encryption exponent).

7. Keep all other numbers private to yourself, but remember d: It will be your
decryption exponent.

To encrypt a message m, compute m∗ = rem(me, n). To decrypt an encrypted
message m∗, calculate rem((m∗)d, n).

Task 9

a. Now, create your group’s own personal RSA key by choosing large prime
values of p and q with 10 digits—use an online list of primes as a reference.
(We want a larger modulus so we can send longer messages, but not so long
that calculators can’t handle it.) Write p, q, n, and ϕ(n) down here:

b. Now, find a pair of multiplicative inverses e and d modulus ϕ(n). You can use
any online calculators/generators (we recommend Wolfram Alpha) to help you
with things like prime factorization or solving congruencies.
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c. Now, “publish” your n and e by posting them on this EdStem post. Your TAs
will send you an encrypted message via a follow-up to your comment.

d. Once you have received an encrypted message from your TAs, use your private
decryption exponent d to decrypt and read the message! More information
about how to interpret the plaintext message is on the EdStem post.

Checkoff - Call a TA over!
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