Functions, Injectivity, Surjectivity, Bijections

Robert Y. Lewis

CS 02202024

February 16, 2024

Overview

1 Relation Diagrams (4.4.1)

2 Relational Images (4.4.2)

Binary relations

Definition. A binary relation, R, consists of a set, A, called the domain of R, a set, B, called the codomain of R, and a subset of $A \times B$ called the graph of R.

Properties of relations

A binary relation:

- is a partial function when it has the [≤ 1 arrow out] property. Book: "function". Us: "function" is [=1 arrow out] property.
■ is surjective when it has the [≥ 1 arrows in] property.
- is total when it has the [≥ 1 arrows out] property.
- is injective when it has the [≤ 1 arrow in] property.

■ is bijective when it has both the [$=1$ arrow out] and the [$=1$ arrow in] properties.

Example relation \#1

partial function: [≤ 1 out]. surjective: [$\geq 1 \mathrm{in}$]. total: [≥ 1 out]. injective: [$\leq 1 \mathrm{in}$]. bijective: [=1 out] and [=1 in].

Partial function; surjective; total. Not injective, not bijective. Summary: a surjective function. (Implies partial function and total.)

Example relation \#2

partial function: [≤ 1 out]. surjective: [$\geq 1 \mathrm{in}$]. total: [≥ 1 out]. injective: $[\leq 1 \mathrm{in}$]. bijective: [=1 out] and [=1 in].

Partial function; total; injective. Not surjective, not bijective. Summary: an injective function. (Implies partial function and total.)

Example relation \#3

partial function: [≤ 1 out]. surjective: [$\geq 1 \mathrm{in}$]. total: [≥ 1 out]. injective: [$\leq 1 \mathrm{in}$]. bijective: [=1 out] and [=1 in].
Equation $y=1 / x^{2}$ on $\mathbb{R}^{+} . x$ is an element in the domain, y is an element in the co-domain.

Partial function; surjective; total; injective; bijective. Summary: a bijective (partial) function. (Implies everything else.)

Example relation \#4

partial function: [≤ 1 out]. surjective: [$\geq 1 \mathrm{in}$]. total: [≥ 1 out]. injective: [$\leq 1 \mathrm{in}$]. bijective: [=1 out] and [=1 in].

Equation $y=1 / x^{2}$ on \mathbb{R}.

Partial function. Not anything else.

Image definition

Definition. The image of a set $Y \subseteq A$ under a relation $R: A \rightarrow B$, written $R(Y)$, is the subset of elements of the codomain B of R that are related to some element in Y. In terms of the relation diagram, $R(Y)$ is the set of points with an arrow coming in that starts from some point in Y.
$R(Y)=\{x \in B \mid \exists y \in Y, y R x\}$.

Inverse definition

Definition: The inverse R^{-1} of a relation $R: A \rightarrow B$ is the relation from B to A defined by the rule
$b R^{-1} a \leftrightarrow a R b$.
Definition: The image of a set under the relation R^{-1} is called the inverse image of the set. That is, the inverse image of a set X under the relation R is defined to be $R^{-1}(X)$.

Example: $x R y$ iff there's a dictionary word with first letter x and second letter y. The image $R(\{c, k\})$ is the letters that can appear after ' c ' or ' k ' at the beginning of a word. It's the set $\{a, e, h, i, l, n, o, r, u, v, w, y, z\}$.
The inverse image $R^{-1}(\{c, k\})$ is the letters that can appear before ' c ' or ' k ' at the beginning of a word. It's the set $\{a, e, i, o, s, t, u\}$.

Inverses of relations

What can we infer about R^{-1} if R is:

- partial function? injective
- surjective? total
- total? surjective

■ injective? partial function

- bijective? bijective

■ function? injective and surjective

More examples to consider

Can you come up with examples of relations on \mathbb{R} that are:
■ Surjective, not a partial function?
■ A partial function, total, injective but not surjective?

- Everything (a bijective function)? (Something different from $y=x$!)

