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Definitions
A space is a square.
A board is an n×m rectangle of spaces with adjacent spaces touching.
A tile is a set of touching squares that can go on top of an identically-shaped set of
spaces.
An L-shaped tile is 3 squares where two are touching a central third on consecutive
sides.
A center space of a square n× n board for even n is any of the four spaces touching
the midpoint of the board (n/2, n/2).
A placement of tiles on a board assigns each square in a tile to each space on the
board so adjacency relationships are maintained and no squares are assigned to
the same space. (Injection!)
A hole is a cell not assigned a tile in a given placement.
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Picture

space? board? tile? L-shared tile? center space? placement? hole?
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Theorem
Theorem: For any n ≥ 0, for any selected space on a 2n × 2n board, there exists a tiling
of the board using L-shaped tiles such that there is exactly one hole and it is at that
selected space.

Example:
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Base Case

Proof: The proof is by induction. Let P(n) be the proposition that, for any selected
space, there exists a tiling of a 2n × 2n board using L-shaped tiles such that there is
exactly one hole and it is on the selected space.

Base case: P(0) is true because there is only one space and there is a tiling (place no
tiles) that has exactly one hole and it is in that space.
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Inductive Step: Picture
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Inductive Step: Words

Assume that P(n) is true for some n ≥ 0; that is, for every space on a 2n × 2n board,
there exists a placement of L-shaped tiles that leaves only the chosen space empty. Our
goal is to show that P(n+ 1) is true.

Divide the 2n+1 × 2n+1 board into four quadrants, each 2n × 2n. One quadrant contains
the cell we want to leave empty. Select empty cells for the other three quadrants that
are their corners that are center cells for the full board. By four applications of our
inductive hypothesis, we can make a placement of L-shaped tiles that leave only those
empty cells. Now, add one more L-shaped tile to the board, covering the undesired
center cells.

This argument proves that P(n) implies P(n+ 1) for all n ≥ 0. Thus, P(m) is true for all
m ∈ N.
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Theorem: Repeated
Theorem: For all n ≥ 0, there exists a tiling of a 2n × 2n board using L-shaped tiles such
that there is exactly one hole and it is on a center space.
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Induction starting at a value other than 0
Our previous recipe for induction: to show P(n) for every n ∈ N, it suffices to show

P(0)
For an arbitrary n, if P(n) holds, then P(n+ 1) holds.

Claim: to show Q(n) for every n ≥ k, it suffices to show
Q(k)
for an arbitrary n ≥ k, if Q(n) holds, then Q(n+ 1) holds.

Proof. Suppose we have a predicateQ(n) with those properties. Define P(n) = Q(n+ k).
We show ∀n, P(n) holds by induction. P(0) = Q(0 + k) holds, by assumption 1. Suppose
P(n) holds for an arbitrary n. This means Q(n+ k) holds. Since n+ k ≥ k, assumption 2
says Q(n+ k + 1) holds. And this is P(n+ 1). So by induction, we have shown
P(n) = Q(n+ k) holds for all n: that is, Q(n) holds for all n ≥ k.
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Example
Theorem. For every natural number n ≥ 5, 2n > n2.
Proof. By induction on n starting at 5, with predicate P(n) defined to be 2n > n2.

Base case: 25 = 32 > 25 = 52.
Inductive step: suppose n ≥ 5 and 2n > n2. We want to show 2n+1 > (n+ 1)2. Since
n ≥ 5, we have 2n+ 1 ≤ 3n≤ n2. So:

(n+ 1)2 = n2 + 2n+ 1
≤ n2 + n2

< 2n + 2n

= 2n+1

This concludes our proof by induction from a starting point.
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Strong Induction

Compare these two different “induction step” rules:

Ordinary induction: for all n ∈ N, P(n) implies P(n+ 1).

Strong induction: for all n ∈ N, P(0), P(1), . . . , P(n) together imply P(n+ 1).

Strong induction lets you assume more in your inductive step. If you plan to use it in a
proof, make sure you say so up front.
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A recipe

To prove by strong induction that P(n) holds for every n ≥ k, we need to show that
P(k) holds.
For any n ≥ k, if P(k), . . . , P(n) all hold, then P(n+ 1) holds.

Combines strong induction and induction from a starting point! What happens when
k = 0?
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Example usage of strong induction

Theorem: Every integer greater than 1 is a product of primes.

Our proof will use strong induction on P(n) “n is a product of primes”.

We need to prove that P(n) holds for all n ≥ 2.

Base Case (n = 2): P(2) is true because 2 is prime, so it is the product of (one) primes.
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Inductive step

Inductive step: Suppose that n ≥ 2 and that k is a product of primes for every integer k
where 2 ≤ k ≤ n. We must show that P(n+ 1), that is, n+ 1 is a product of primes. We
proceed by cases:

n+ 1 is prime: It is the product of (one) primes, so P(n+ 1) holds.
n+ 1 is not prime: By definition, n+ 1 = km for some integers k,m such that
2 ≤ k,m ≤ n. By the strong induction hypothesis, both k andm are products of
primes. So, therefore, so is km and so is n+ 1. Again, P(n+ 1) holds.

That completes the cases. And, that completes the strong induction proof.
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Another version of strong induction

We can phrase the strong induction principle differently:

To show P(n) holds for all n ∈ N, it is enough to show that for an arbitrary n, if P(k)
holds for every k < n, then P(n) holds.

No base case! Why not?
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Coins of 3 and 5 units
What values can you make if you have coins worth 3 and 5 units?

1? No.
2? No.
3? Yes, one 3-unit coin: (0, 1).
4? No.
5? Yes, one 5-unit coin: (1, 0).
6? Yes, two 3-unit coins: (0, 2).
7? No.
8? Yes: (1, 1).
9? Yes: (0, 3).
10? Yes: (2, 0).
11? Yes: (1, 2).
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Coin Theorem
Theorem: You can make all values 8 or larger using coins of value 3 and 5.

Proof: We proceed by strong induction with induction hypothesis P(n): There is a
collection of coins whose value is n.

Base case: P(8) is true because we can make 8 using (1, 1).

Inductive step: Assume P(k) holds for all integers 8 ≤ k ≤ n, and now prove P(n+ 1)
holds. We argue by cases:

n = 9: (0, 3)
n = 10: (2, 0)
n ≥ 11: By strong induction, we can make the value n− 2, then add a 3-unit coin to
get n+ 1.

That completes the proof by strong induction, which proves the theorem. QED.
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Every number is interesting

Theorem. Every natural number is interesting.

Proof. We proceed by strong induction with the property P(n) = “n is interesting.”

Base case: 0 is certainly interesting!

Inductive case: suppose 0, . . . , n are all interesting. If n+ 1 were not interesting, it
would be the smallest noninteresting number. But that’s interesting!
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Stacking game

The game

Start with a list of numbers and a score of zero. Pick an integer z from the list and
replace it with two positive integers x and y such that x + y = z. Add xy to your score.
Continue until list consists of all 1s. Try to maximize your score.

Example:

7 0
5 2 10
2 3 2 16
2 2 1 2 18
1 1 2 1 2 19
1 1 2 1 1 1 20
1 1 1 1 1 1 1 21
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Stacking game

Irrelevance theorem

Theorem: No matter how you play the game starting from n ≥ 1, your score will be
n(n− 1)/2.

Proof: The proof is by strong induction with P(n) as the proposition that every way of
playing starting with the number n gives a score of n(n− 1)/2.

Base case: Starting from a list of n = 1, the game ends immediately with a score of
n(n− 1)/2 = 1(0)/2 = 0. P(1) is true.

Inductive step:We must show that P(1), . . . , P(n) imply P(n+ 1) for all n ≥ 1. Assume
that P(1), . . . , P(n) are all true and we are playing starting with n+ 1. The first move
must break n+ 1 into positive numbers a and bwith a+ b = n+ 1. The total score for
the game is the sum of points for this first move plus the scores obtained from playing
with a and b:
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Stacking game

Inductive step

total score = score for turning n+ 1 into a and b
+ score from starting with a
+ score from starting with b rules of game

= ab+ a(a−1)
2 + b(b−1)

2 inductive hyp.
= 2ab+a2−a+b2−b

2
= (a+b)2−(a+b)

2 algebra
= (n+1)2−(n+1)

2 Defn a, b
= (n+ 1)n/2 algebra

We showed P(1), P(2), . . . , P(n) implies P(n+ 1), showing the claim true by strong
induction. QED.
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More on strong induction

Proving strong induction

We can prove that this principle of strong induction works, using regular induction.
Suppose: for all n ∈ N, if P(k) holds for every k < n, then P(n) holds. (Call this
hypothesis H.)

We’ll proceed by induction on the property Q(n) = “P(k) holds for every k < n.”

Base case: Q(0) holds, since P(k) holds for every k < 0.

Inductive step: Suppose Q(n) holds. So P(k) holds for every k < n. By our hypothesis H,
P(n) holds. Thus, P(k) holds for every k < n+ 1, which is Q(n+ 1).
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More on strong induction

Strong Induction vs. Induction vs. Well Ordering (5.3)

Covered in the book, Chapter 2.

Idea: If a claim has a counterexample, it has a least counterexample. And, if we can
prove (by contradiction) that its existence implies an even smaller counterexample,
then it wasn’t the smallest counterexample after all. Indeed, there must be no
counterexample (!).

It is basically a rephrasing of strong induction because we’re showing that being true up
to some value nmeans it can’t be false for n.

And, strong induction is just ordinary induction with a universal quantifier in its key
proposition.

So, three different names for the same thing. Use is a matter of taste.
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