Multiplicative Inverse, Fermat's little Theorem

Robert Y. Lewis
CS 02202024
March 6, 2024

Overview

1 Multiplicative Inverses (8.6.1)

2 Cancellation (8.6.2)

3 Fermat's Little Theorem (8.6.3)

Back to basics

Definition: The multiplicative inverse of a number x is a number x^{-1} such that: $x \cdot x^{-1}=1$.

Division by x is really multiplication by x^{-1}.
Over the reals, what values have inverses? Everybody but zero.
Over the integers, what values have inverses? Only 1 and -1 .
Over the integers $\bmod n$, what values have inverses?

Example, mod 10

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

What specific values have inverses? $1,3,7,9$.
What specific values do not have inverses? $0,2,4,5,6,8$.
General rule? a has an inverse $(\bmod n)$ iff $\operatorname{gcd}(a, n)=1$.

Back to solving

```
\(3 x+4 \equiv 27 \quad(\bmod 11)\)
\(3 x \quad \equiv 23 \quad(\bmod 11) \quad\) add -4 to both sides
```

Want to multiply both sides by $3^{-1}=4$, since $3 \times 4 \equiv 1(\bmod 11)$.

$3 x$	$\equiv 23$	$(\bmod 11)$	
$4 \times 3 x$	$\equiv 4 \times 23$	$(\bmod 11)$	multiply both sides by 4
$12 x$	$\equiv 92$	$(\bmod 11)$	simplify
x	$\equiv 4$	$(\bmod 11)$	congruence

Double check: plug in 4 or 15 to the original formula.

Inverse mod prime

General rule for existence of multiplicative inverses? a has an inverse $\bmod n$ iff $\operatorname{gcd}(a, n)=1$.
If this rule holds, all values (except zero!) have inverses mod a prime.
Lemma: If p is prime and k is not a multiple of p, then k has a multiplicative inverse modulo p.

Proof: Since p is prime and k is not a multiple of $p, \operatorname{gcd}(p, k)=1$. Therefore, there are s and t such that $1=s p+t k$. So, $\bmod p$, that's $1 \equiv t k$, or $t \equiv k^{-1} \bmod p$. QED.
Example: What's the multiplicative inverse of $3(\bmod 11)$?
$\operatorname{gcdcombo}(3,11)=(4,-1,1)$
So? 4 works. Because $1=4 \times 3-1 \cdot 11$, so, mod 11 , that's $1 \equiv 4 \times 3$.

Back to dividing both sides

Earlier, we saw:

$$
\begin{aligned}
7 & \equiv 28 & (\bmod 3) & \\
1 & \equiv 4 & (\bmod 3) & \text { divide by } 7
\end{aligned}
$$

Doesn't actually work, in general:

```
12 \equiv6 (mod}3
4 \not\equiv2 (mod3) divide by 3
```

Why? Because we're really talking about multiplying both sides by 0^{-1}, which doesn't exist.

Cancellation

Theorem.

If we have

$$
a k \equiv b k \quad(\bmod p)
$$

and p is prime and $k \not \equiv 0(\bmod p)$, then $a \equiv b \quad(\bmod p)$.
Proof. $k^{-1} \bmod p$ exists. So, multiply both sides by k^{-1} and congruence is maintained.

Permuting

Corollary: Suppose p is prime and k is not a multiple of p. Then, the sequence of remainders on division by p of the sequence:

$$
1 \cdot k, 2 \cdot k, \ldots,(p-1) \cdot k
$$

is a permutation of the sequence:

$$
1,2, \ldots,(p-1) .
$$

Example, $k=3, p=11$:

i	1	2	3	4	5	6	7	8	9	10
$\times k$	3	6	9	12	15	18	21	24	27	30
$\bmod p$	3	6	9	1	4	7	10	2	5	8

Permutation proof

Proof: The sequence of remainders contains $p-1$ numbers. Since $i \times k$ is not divisible by p (neither contains a factor of p) for $i=1, \ldots, p-1$, all these remainders are in $[1, p$) by the definition of remainder.
Claim: if $i \cdot k \equiv j \cdot k(\bmod p)$, then $i=j$. (Cancel k; since $1 \leq i<p, i(\bmod p)=i$, same for j.)

So, $i-1$ distinct values between 1 and $i-1$: it's a permutation.
It's a magic shuffle function. Useful for randomization and sending secret messages!

Fermat's little theorem

Theorem: Suppose p is prime and k is not a multiple of p. Then:

$$
k^{p-1} \equiv 1 \quad(\bmod p)
$$

$$
\begin{aligned}
& (p-1)! \\
& =1 \cdot 2 \cdots \cdot(p-1)
\end{aligned}
$$

Defn. of factorial

$$
\text { Proof: }=\operatorname{rem}(k, p) \cdot \operatorname{rem}(2 k, p) \cdots \operatorname{rem}((p-1) k, p) \quad \text { Permutation lemma }
$$

$$
\equiv k \cdot 2 k \cdots(p-1) k \quad(\bmod p)
$$

Congruence of mult.

$$
\equiv(p-1)!k^{p-1} \quad(\bmod p)
$$ algebra

Note that $(p-1)$! is not a multiple of p because none of $1,2, \ldots,(p-1)$ contain a factor of p. So, by the Cancellation lemma, we can cancel $(p-1)$! from the top and bottom, proving the claim. QED

Inverses from Fermat's little theorem

Since $k^{p-1} \equiv 1 \quad(\bmod p)$ and $k^{p-1}=k \cdot k^{p-2}$, that tells us that k^{p-2} is the multiplicative inverse for k.

We can compute $k^{p-2}(\bmod p)$ efficiently using a technique called exponentiation by repeated squaring.

Running time is $2 \log p$, just like "gcdcombo".

Exponentiation by Repeated Squaring Idea

Can always compute a^{k} by $k-1$ multiplications of a.
If k is even, can compute it with $k / 2-1$ multiplications of a to get $a^{k / 2}$. Then, $a^{k}=\left(a^{k / 2}\right)^{2}$. So, one more multiplication and we're there.
If k is odd, similar trick to get $a^{(k-1) / 2}$, then square, then multiply one more a.
Repeating this idea, the number of multiplications is on the order of $2 \log k$.

Exponentiation by Repeated Squaring

```
def repsq(a,k):
    if \(k=0\) : return(1)
    if \(k\) \% \(2=0\) :
        sqroot \(=\) repsq(a,k/2)
        return(sqroot*sqroot)
    sqrootdiva \(=\) repsq(a,(k-1)/2)
    return(sqrootdiva*sqrootdiva*a)
```

(Note: we're using the infix notation \% to mean "remainder," often read out loud as "mod.")

Never need to multiply big numbers

When doing multiplication $\bmod n$, we can always $\bmod n$ the numbers first.
Example:
$7415 \times 2993 \% 3$
$=22193095 \% 3$
$=1$
OR:
$(7415 \% 3) \times(2993 \% 3) \% 3$
(2 \% 2) \% 3
$=1$.

Proof

Theorem. $a b \% n=(a \% n)(b \% n) \% n$.
Proof.

$$
\begin{aligned}
a & =q_{1} n+r_{1} \\
b & =q_{2} n+r_{2} \\
a b & =\left(q_{1} n+r_{1}\right)\left(q_{2} n+r_{2}\right) \\
a b & =\left(q_{1} q_{2} n+q_{1} r_{2}+q_{2} r_{1}\right) n+r_{1} r_{2}
\end{aligned}
$$

So, cancelling out the multiple of $n, a b \% n=r_{1} r_{2} \% n$.

Exponentiation by Repeated Squaring Mod Style

```
def repsqmodn(a,k,n):
    a := a % n
    if k == 0: return(1)
    if k % 2 == 0:
        sqrootdiva = repsqmodn(a,k/2,n)
        return((sqrootdiva*sqrootdiva) % n)
    sqrootdiva = repsqmodn(a,(k-1)/2,n)
    return((sqrootdiva*sqrootdiva*a) % n)
```

