Fermat's Little Theorem (8.6.3)

Multiplicative Inverse, Fermat's little Theorem

Robert Y. Lewis

CS 0220 2024

March 6, 2024

Cancellation (8.6.2)

Fermat's Little Theorem (8.6.3)

Overview

1 Multiplicative Inverses (8.6.1)

2 Cancellation (8.6.2)

3 Fermat's Little Theorem (8.6.3)

Back to basics

Definition: The *multiplicative inverse* of a number x is a number x^{-1} such that: $x \cdot x^{-1} = 1$.

Division by x is really multiplication by x^{-1} .

Over the reals, what values have inverses? Everybody but zero.

Over the integers, what values have inverses? Only 1 and -1.

Over the integers mod *n*, what values have inverses?

Cancellation (8.6.2)

Fermat's Little Theorem (8.6.3)

Example, mod 10

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

What specific values have inverses? 1, 3, 7, 9.

-

What specific values do *not* have inverses? 0, 2, 4, 5, 6, 8.

General rule? *a* has an inverse (mod *n*) iff gcd(a, n) = 1.

Back to solving

 $\begin{array}{rrrr} 3x+4 &\equiv 27 \pmod{11} \\ 3x &\equiv 23 \pmod{11} & \text{add} - 4 \text{ to both sides} \end{array}$

Want to multiply both sides by $3^{-1} = 4$, since $3 \times 4 \equiv 1 \pmod{11}$.

3 <i>x</i>	\equiv 23	(mod11)	
$4 \times 3x$	\equiv 4 $ imes$ 23	(mod11)	multiply both sides by 4
12 <i>x</i>	\equiv 92	(mod11)	simplify
х	\equiv 4	(mod11)	congruence

Double check: plug in 4 or 15 to the original formula.

Inverse mod prime

General rule for existence of multiplicative inverses? *a* has an inverse mod *n* iff gcd(a, n) = 1. If this rule holds, all values (except zero!) have inverses mod a prime.

Lemma: If *p* is prime and *k* is not a multiple of *p*, then *k* has a multiplicative inverse modulo *p*.

Proof: Since *p* is prime and *k* is not a multiple of *p*, gcd(p, k) = 1. Therefore, there are *s* and *t* such that 1 = sp + tk. So, mod *p*, that's $1 \equiv tk$, or $t \equiv k^{-1} \mod p$. QED.

Example: What's the multiplicative inverse of 3 (mod 11)?

gcdcombo(3, 11) = (4, -1, 1)

So? 4 works. Because $1 = 4 \times 3 - 1 \cdot 11$, so, mod 11, that's $1 \equiv 4 \times 3$.

Back to dividing both sides

Earlier, we saw:

- $7 \equiv 28 \pmod{3}$
- $1 \equiv 4 \pmod{3}$ divide by 7

Doesn't actually work, in general:

 $\begin{array}{rrrr} 12 & \equiv 6 \pmod{3} \\ 4 & \not\equiv 2 \pmod{3} & \text{divide by 3} \end{array}$

Why? Because we're really talking about multiplying both sides by 0^{-1} , which doesn't exist.

Cancellation (8.6.2)

Fermat's Little Theorem (8.6.3)

Cancellation

Theorem.

If we have

$$ak \equiv bk \pmod{p}$$

and p is prime and $k \not\equiv 0 \pmod{p}$, then $a \equiv b \pmod{p}$.

Proof. $k^{-1} \mod p$ exists. So, multiply both sides by k^{-1} and congruence is maintained.

Cancellation (8.6.2) ○○●○ Fermat's Little Theorem (8.6.3)

Permuting

Corollary: Suppose *p* is prime and *k* is not a multiple of *p*. Then, the sequence of remainders on division by *p* of the sequence:

$$1 \cdot k, 2 \cdot k, \ldots, (p-1) \cdot k$$

is a permutation of the sequence:

$$1, 2, \ldots, (p-1).$$

Example, k = 3, p = 11: i | 1 2 3 4 5 6 7 8 9 10 $\times k | 3 6 9 12 15 18 21 24 27 30$ mod p | 3 6 9 1 4 7 10 2 5 8

Permutation proof

Proof: The sequence of remainders contains p - 1 numbers. Since $i \times k$ is not divisible by p (neither contains a factor of p) for i = 1, ..., p - 1, all these remainders are in [1, p) by the definition of remainder.

Claim: if $i \cdot k \equiv j \cdot k \pmod{p}$, then i = j. (Cancel k; since $1 \le i < p$, $i \pmod{p} = i$, same for *j*.)

So, i - 1 distinct values between 1 and i - 1: it's a permutation.

It's a magic shuffle function. Useful for randomization and sending secret messages!

Fermat's little theorem

Theorem: Suppose *p* is prime and *k* is not a multiple of *p*. Then:

$$k^{p-1} \equiv 1 \pmod{p}.$$

$$\begin{array}{ll} (p-1)! \\ = 1 \cdot 2 \cdots (p-1) & \text{Defn. of factorial} \\ \textbf{Proof:} &= \operatorname{rem}(k,p) \cdot \operatorname{rem}(2k,p) \cdots \operatorname{rem}((p-1)k,p) & \text{Permutation lemma} \\ &\equiv k \cdot 2k \cdots (p-1)k \pmod{p} & \text{Congruence of mult.} \\ &\equiv (p-1)!k^{p-1} \pmod{p} & \text{algebra} \end{array}$$

Note that (p-1)! is not a multiple of p because none of 1, 2, ..., (p-1) contain a factor of p. So, by the Cancellation lemma, we can cancel (p-1)! from the top and bottom, proving the claim. QED

Inverses from Fermat's little theorem

Since $k^{p-1} \equiv 1 \pmod{p}$ and $k^{p-1} = k \cdot k^{p-2}$, that tells us that k^{p-2} is the multiplicative inverse for k.

We can compute $k^{p-2} \pmod{p}$ efficiently using a technique called exponentiation by repeated squaring.

Running time is 2 log *p*, just like "gcdcombo".

Exponentiation by Repeated Squaring Idea

Can always compute a^k by k - 1 multiplications of a.

If k is even, can compute it with k/2 - 1 multiplications of a to get $a^{k/2}$. Then, $a^k = (a^{k/2})^2$. So, one more multiplication and we're there.

If k is odd, similar trick to get $a^{(k-1)/2}$, then square, then multiply one more a.

Repeating this idea, the number of multiplications is on the order of $2 \log k$.

Exponentiation by Repeated Squaring

```
def repsq(a,k):
    if k == 0: return(1)
    if k % 2 == 0:
        sqroot = repsq(a,k/2)
        return(sqroot*sqroot)
    sqrootdiva = repsq(a,(k-1)/2)
    return(sqrootdiva*sqrootdiva*a)
```

(Note: we're using the infix notation % to mean "remainder," often read out loud as "mod.")

Never need to multiply big numbers

When doing multiplication mod *n*, we can always mod *n* the numbers first.

```
Example:

7415 \times 2993 \% 3

= 22193095 \% 3

= 1

OR:

(7415 \% 3) \times (2993 \% 3) \% 3

(2 \% 2) \% 3

= 1.
```

Cancellation (8.6.2)

Fermat's Little Theorem (8.6.3)

Proof

Theorem. ab % n = (a % n)(b % n) % n. **Proof.**

$$a = q_1n + r_1$$

$$b = q_2n + r_2$$

$$ab = (q_1n + r_1)(q_2n + r_2)$$

$$ab = (q_1q_2n + q_1r_2 + q_2r_1)n + r_1r_2$$

So, cancelling out the multiple of *n*, *ab* % $n = r_1 r_2$ % *n*.

Exponentiation by Repeated Squaring Mod Style

```
def repsqmodn(a,k,n):
    a := a % n
    if k == 0: return(1)
    if k % 2 == 0:
        sqrootdiva = repsqmodn(a,k/2,n)
        return((sqrootdiva*sqrootdiva) % n)
    sqrootdiva = repsqmodn(a,(k-1)/2,n)
    return((sqrootdiva*sqrootdiva*a) % n)
```