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Back to basics

Definition: The multiplicative inverse of a number x is a number x~* such that:
-1
xX-x =1

Division by x is really multiplication by x 1.
Over the reals, what values have inverses? Everybody but zero.
Over the integers, what values have inverses? Only 1 and —1.

Over the integers mod n, what values have inverses?
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Example, mod 10
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What specific values have inverses? 1, 3, 7, 9.
What specific values do not have inverses? 0, 2,4, 5, 6, 8.

General rule? a has an inverse (mod n) iff ged(a, n) = 1.
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Back to solving

3x+4 =27 (modll)

3x =23 (modll) add —4to both sides
Want to multiply both sides by 37! =4,since3 x 4 =1 (mod11).
3x =23 (mod11)
4x3x =4x23 (modll) multiply both sides by 4
12x =92 (mod11) simplify
X =4 (mod11) congruence

Double check: plugin 4 or 15 to the original formula.
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Inverse mod prime

General rule for existence of multiplicative inverses? a has an inverse mod n iff
ged(a, n) = 1.
If this rule holds, all values (except zero!) have inverses mod a prime.

Lemma: If p is prime and k is not a multiple of p, then k has a multiplicative inverse
modaulo p.

Proof: Since p is prime and k is not a multiple of p, gcd(p, k) = 1. Therefore, there are s
and t such that 1 = sp + tk. So, mod p, that’s 1 = tk, ort = k~! mod p. QED.

Example: What’s the multiplicative inverse of 3 (mod 11)?
gcdcombo(3,11) = (4,—-1,1)
So? 4 works. Becausel =4 x 3 —1-11,s0, mod 11, that’s1 =4 x 3.
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Back to dividing both sides

Earlier, we saw:
7 =28 (mod3)
1 =4 (mod3) divideby7
Doesn’t actually work, in general:
12 =6 (mod3)
4 #£2 (mod3) divideby3

Why? Because we’re really talking about multiplying both sides by 0~1, which doesn’t
exist.
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Cancellation

Theorem.
If we have
ak = bk (modp)

andpisprimeandk 0 (modp),thena=b (modp).

Proof. kK~ mod p exists. So, multiply both sides by k! and congruence is maintained.
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Permuting

Corollary: Suppose p is prime and k is not a multiple of p. Then, the sequence of
remainders on division by p of the sequence:

1-k,2-k,....,(p—1)-k
is a permutation of the sequence:

1,2,...,(p—1).

Example, k = 3,p = 11:

i |1 23 4 5 6 7 8 9 10
xk |3 6 9 12 15 18 21 24 27 30
modp |3 6 9 1 4 7 10 2 5 8
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Permutation proof

Proof: The sequence of remainders contains p — 1 numbers. Since i x k is not divisible
by p (neither contains a factor of p) fori = 1,...,p — 1, all these remainders are in [1, p)
by the definition of remainder.

Claim:ifi-k=j-k (modp),theni=j.(Cancelk;sincel <i < p,i(modp) = i,same
forj.)

So, i — 1distinct values between 1 and j — 1: it’s a permutation.

It’s a magic shuffle function. Useful for randomization and sending secret messages!
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Fermat’s little theorem

Theorem: Suppose p is prime and k is not a multiple of p. Then:

kP~1=1 (modp).

(p—1)!
=1-2----- (p—1) Defn. of factorial
Proof: =rem(k,p)-rem(2k,p)---rem((p — 1)k,p) Permutationlemma
=k-2k---(p—1)k (modp) Congruence of mult.
= (p - 1)kP~1 (modp) algebra
Note that (p — 1)! is not a multiple of p because noneof 1,2,...,(p — 1) contain a

factor of p. So, by the Cancellation lemma, we can cancel (p — 1)! from the top and
bottom, proving the claim. QED
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Inverses from Fermat’s little theorem

SincekP~ =1 (modp)and kP~ = k- kP~2, that tells us that k°~2 is the multiplicative
inverse for k.

We can compute k»~2  (modp) efficiently using a technique called exponentiation by
repeated squaring.

Running timeis 2 log p, just like “gcdcombo”.
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Exponentiation by Repeated Squaring Idea

Can always compute a¥ by k — 1 multiplications of a.

If k is even, can compute it with k/2 — 1 multiplications of a to get a/2. Then,

a¥ = (a*/?)2. So, one more multiplication and we’re there.

If k is odd, similar trick to get ak~1)/2, then square, then multiply one more a.

Repeating this idea, the number of multiplications is on the order of 2 log k.
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Exponentiation by Repeated Squaring

def repsq(a,k):
if k==0: return(1)
ifk%2==0:
sqroot = repsq(a,k/2)
return(sqroot*sqroot)
sqrootdiva = repsq(a,(k-1)/2)
return(sqrootdiva*sqrootdiva*a)

(Note: we’re using the infix notation % to mean “remainder,” often read out loud as
“mod.”)
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Never need to multiply big numbers

When doing multiplication mod n, we can always mod n the numbers first.

Example:

7415 x 2993 % 3

= 22193095 % 3

=1

OR:

(7415%3) x (2993 % 3) % 3
(2%2)%3

=1.
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Proof

Theorem. ab % n = (a % n)(b % n) % n.

Proof.
a = qih+n
b = qgn+n
ab = (qin+r1)(gan+r2)

ab

(91G2n + q1r2 + gar1)n + 11r2

So, cancelling out the multiple of n,ab % n = rir; % n.
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Exponentiation by Repeated Squaring Mod Style

def repsgmodn(a,k,n):
a:=a%n
if k ==0: return(1)
ifk%2==0:
sqrootdiva = repsgmodn(a,k/2,n)
return((sqrootdiva*sqrootdiva) % n)
sqrootdiva = repsqmodn(a,(k-1)/2,n)
return((sqrootdiva*sqrootdiva*a) % n)
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