
Multiplicative Inverses (8.6.1) Cancellation (8.6.2) Fermat’s Little Theorem (8.6.3)

Multiplicative Inverse, Fermat’s little Theorem

Robert Y. Lewis

CS 0220 2024

March 6, 2024



Multiplicative Inverses (8.6.1) Cancellation (8.6.2) Fermat’s Little Theorem (8.6.3)

Overview

1 Multiplicative Inverses (8.6.1)

2 Cancellation (8.6.2)

3 Fermat’s Little Theorem (8.6.3)



Multiplicative Inverses (8.6.1) Cancellation (8.6.2) Fermat’s Little Theorem (8.6.3)

Back to basics

Definition: Themultiplicative inverse of a number x is a number x−1 such that:
x · x−1 = 1.

Division by x is really multiplication by x−1.

Over the reals, what values have inverses? Everybody but zero.

Over the integers, what values have inverses? Only 1 and −1.

Over the integers mod n, what values have inverses?
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Example, mod 10
0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3
8 0 8 6 4 2 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1

What specific values have inverses? 1, 3, 7, 9.

What specific values do not have inverses? 0, 2, 4, 5, 6, 8.

General rule? a has an inverse (mod n) iff gcd(a, n) = 1.
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Back to solving

3x + 4 ≡ 27 (mod11)
3x ≡ 23 (mod11) add −4 to both sides

Want to multiply both sides by 3−1 = 4, since 3 × 4 ≡ 1 (mod11).

3x ≡ 23 (mod11)
4 × 3x ≡ 4 × 23 (mod11) multiply both sides by 4
12x ≡ 92 (mod11) simplify
x ≡ 4 (mod11) congruence

Double check: plug in 4 or 15 to the original formula.
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Inverse mod prime

General rule for existence of multiplicative inverses? a has an inverse mod n iff
gcd(a, n) = 1.
If this rule holds, all values (except zero!) have inverses mod a prime.

Lemma: If p is prime and k is not a multiple of p, then k has a multiplicative inverse
modulo p.

Proof: Since p is prime and k is not a multiple of p, gcd(p, k) = 1. Therefore, there are s
and t such that 1 = sp+ tk. So, mod p, that’s 1 ≡ tk, or t ≡ k−1 mod p. QED.

Example: What’s the multiplicative inverse of 3 (mod 11)?

gcdcombo(3, 11) = (4,−1, 1)

So? 4 works. Because 1 = 4 × 3 − 1 · 11, so, mod 11, that’s 1 ≡ 4 × 3.
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Back to dividing both sides

Earlier, we saw:
7 ≡ 28 (mod3)
1 ≡ 4 (mod3) divide by 7

Doesn’t actually work, in general:

12 ≡ 6 (mod3)
4 ̸≡ 2 (mod3) divide by 3

Why? Because we’re really talking about multiplying both sides by 0−1, which doesn’t
exist.
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Cancellation

Theorem.
If we have

ak ≡ bk (modp)

and p is prime and k ̸≡ 0 (modp), then a ≡ b (modp).

Proof. k−1 mod p exists. So, multiply both sides by k−1 and congruence is maintained.
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Permuting

Corollary: Suppose p is prime and k is not a multiple of p. Then, the sequence of
remainders on division by p of the sequence:

1 · k, 2 · k, . . . , (p− 1) · k

is a permutation of the sequence:

1, 2, . . . , (p− 1).

Example, k = 3, p = 11:

i 1 2 3 4 5 6 7 8 9 10
×k 3 6 9 12 15 18 21 24 27 30

modp 3 6 9 1 4 7 10 2 5 8
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Permutation proof

Proof: The sequence of remainders contains p− 1 numbers. Since i × k is not divisible
by p (neither contains a factor of p) for i = 1, . . . , p− 1, all these remainders are in [1, p)
by the definition of remainder.

Claim: if i · k ≡ j · k (modp), then i = j. (Cancel k; since 1 ≤ i < p, i(modp) = i, same
for j.)

So, i − 1 distinct values between 1 and i − 1: it’s a permutation.

It’s a magic shuffle function. Useful for randomization and sending secret messages!
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Fermat’s little theorem

Theorem: Suppose p is prime and k is not a multiple of p. Then:

kp−1 ≡ 1 (modp).

Proof:

(p− 1)!
= 1 · 2 · · · · · (p− 1) Defn. of factorial
= rem(k, p) · rem(2k, p) · · · rem((p− 1)k, p) Permutation lemma
≡ k · 2k · · · (p− 1)k (modp) Congruence of mult.
≡ (p− 1)!kp−1 (modp) algebra

Note that (p− 1)! is not a multiple of p because none of 1, 2, . . . , (p− 1) contain a
factor of p. So, by the Cancellation lemma, we can cancel (p− 1)! from the top and
bottom, proving the claim. QED
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Inverses from Fermat’s little theorem

Since kp−1 ≡ 1 (modp) and kp−1 = k · kp−2, that tells us that kp−2 is the multiplicative
inverse for k.

We can compute kp−2 (modp) efficiently using a technique called exponentiation by
repeated squaring.

Running time is 2 log p, just like “gcdcombo”.
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Exponentiation by Repeated Squaring Idea

Can always compute ak by k − 1 multiplications of a.

If k is even, can compute it with k/2 − 1 multiplications of a to get ak/2. Then,
ak = (ak/2)2. So, one more multiplication and we’re there.

If k is odd, similar trick to get a(k−1)/2, then square, then multiply one more a.

Repeating this idea, the number of multiplications is on the order of 2 log k.
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Exponentiation by Repeated Squaring

def repsq(a,k):
if k == 0: return(1)
if k % 2 == 0:

sqroot = repsq(a,k/2)
return(sqroot*sqroot)

sqrootdiva = repsq(a,(k-1)/2)
return(sqrootdiva*sqrootdiva*a)

(Note: we’re using the infix notation % to mean “remainder,” often read out loud as
“mod.”)
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Never need to multiply big numbers

When doing multiplication mod n, we can always mod n the numbers first.

Example:
7415 × 2993 % 3
= 22193095 % 3
= 1

OR:
(7415 % 3)× (2993 % 3) % 3
(2 % 2) % 3
= 1.
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Proof

Theorem. ab% n = (a% n)(b% n) % n.

Proof.

a = q1n+ r1

b = q2n+ r2

ab = (q1n+ r1)(q2n+ r2)

ab = (q1q2n+ q1r2 + q2r1)n+ r1r2

So, cancelling out the multiple of n, ab% n = r1r2 % n.
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Exponentiation by Repeated Squaring Mod Style

def repsqmodn(a,k,n):
a := a % n
if k == 0: return(1)
if k % 2 == 0:

sqrootdiva = repsqmodn(a,k/2,n)
return((sqrootdiva*sqrootdiva) % n)

sqrootdiva = repsqmodn(a,(k-1)/2,n)
return((sqrootdiva*sqrootdiva*a) % n)
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