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What’s a proposition?

Definition. A proposition is a statement that is either true or false.

Proposition 1: 2 + 3 = 5.
Proposition 2: 1 + 1 = 3.
Proposition 3: The sum of any two odd numbers is even.
Proposition 4: The product of any two odd numbers is even.

We’ll stick with mathematical propositions in this class.

Proposition 5: Rob has a beautiful singing voice.
Proposition? 6: Every action has an equal but opposite reaction.
Not-a-Proposition 7: How many students are in this class?
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How can we tell if a proposition is true?

Definition: A perfect square is a number that can be written n2 for some integer n.

Proposition 8: There is a two-digit perfect square whose final digit is 4.
True. An example is 82 = 64.
Proposition 9: There is a two-digit perfect square whose final digit is 8.
False. I can’t show you an example, because there is no such example.
I could list all the two digit perfect squares, though: 16, 25, 36, 49, 64, 81. All other
perfect squares are either shorter or longer. None end in 8.
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Proposition about numbers

Definition: A perfect square is a number that can be written n2 for some integer n.

Proposition 10: There is perfect square whose final digit is 4.
True. We showed it for two-digit perfect squares, so that’s still true when we
broaden the set of possibilities.
Proposition 11: There is a perfect square whose final digit is 8.
False. The approach of exhaustively listing the possibilities to show it is false
doesn’t work this time. We’ll need another technique.
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Final digits of perfect squares
Define p(n) ::= n2 mod 10, the remainder we get if we take n, square it, and divide by
10. It’s the last digit of the square.
p(0) = 0
p(1) = 1
p(2) = 4
p(3) = 9
p(4) = 6
p(5) = 5
p(6) = 6
p(7) = 9
p(8) = 4
p(9) = 1
p(10) = 0
p(11) = 1
repeating? (Save for later.)
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Is this proposition true?
Definition: A prime is an integer greater than one that is not divisible by any other
integer greater than 1.

Example: 2, 3, 5, 7, 11, 13, 17, . . . .

Proposition 12: For every nonnegative integer, n, the value of n2 + n+ 41 is prime.

Define p(n) ::= n2 + n+ 41.
p(0) = 41, which is prime.
p(1) = 43, which is prime.
p(2) = 47, which is prime.
. . .
p(10) = 151, which is prime.
Looking good!
p(40) = 1681 = 412, not prime. So, no. Counterexample. Short proof (but hard to
find).
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Aside

The book says: There is no non-constant polynomial p(n) with nonnegative integer
coefficients that generates only primes.

Suppose there were such a polynomial p.
Letm be the constant coefficient of p (that’s not multiplied by a power of n). Since
m = p(0) and p(0) is prime,mmust be prime. In particular it can’t be 0 or 1.
Now, consider p(m). All of the terms of p(m) are divisible bym, so p(m) is as well. Since
the polynomial is not constant, and coefficients are nonnegative, p(m) > m. So p(m) is
divisible by a number other than 1 or itself, so it is not prime: a contradiction.

For our example p(n) ::= n2 + n+ 41, p(41) = 1763 = 43 × 41.
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Some useful notation

Z is the integers {. . . ,−4,−3,−2, 1, 0, 1, 2, 3, 4, . . .}.
Z+ is the positive integers {1, 2, 3, 4, . . .}.
N is the non-negative integers {0, 1, 2, 3, 4, . . .}.
∀ means “for all.” It’s an upside down A.
∃ means “exists.” It’s a backwards E. (Or is it?)
Examples:
∃n : N, n2 mod 10 = 6.
Can show exists is true with an example (n = 6).
∀n : N, n2 + n+ 41 is prime.
Can show forall is false with a counterexample (n = 40).

Sometimes we write these as ∃n ∈ N and ∀n ∈ N.
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Toughies

Proposition 13 (Euler’s conjecture): a4 + b4 + c4 = d4 has no solution when a, b, c,
and d are positive integers.
∀a : Z+,∀b : Z+, ∀c : Z+,∀d Z+, a4 + b4 + c4 ̸= d4.
∀a b c d : Z+, a4 + b4 + c4 ̸= d4.
No! a = 95800, b = 217519, c = 414560, d = 422481. (Took 200+ years to resolve.)
Proposition 14: 313(x3 + y3) = z3 has no solution when x, y, z ∈ Z+.
Also, no; but, shortest counterexample is 1000+ digits long.
Proposition 15: Every map can be colored with 4 colors so that adjacent regions
have different colors.
Yes, and the proof is very very long.
Proposition 13 (Goldbach’s conjecture): Every even integer greater than 2 is the
sum of two primes.
Remains unresolved since 1742.
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Who decides "truth"?

We defined “prime number”
And “integer,” and “divisible,” and “1,” ...

The goal of mathematics is “common knowledge”: give anyone the definitions, and
a proof or counterexample, and they can check it. Even a computer could do it.
This is why we’re focusing onmathematical propositions here. Truth in the real
world is a little complicated.
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What’s a Predicate?

A predicate is a proposition whose truth depends on the value of one or more variables.

Examples:
n is odd.
True for n = 25, false for n = 98.
The sum of two numbers a and b is prime.
True for a = 3 and b = 4. False for a = 4 and b = 6.
x is an integer and 2x is even.
True for all integers x.
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Predicates to propositions

Predicate notation:
P(n) ::= “n is a perfect square”.

P(16) is true and P(10) is false.

If P(n) is a predicate, then:
P(22) is a proposition.
∀n, P(n) is a proposition.
∃n, P(n) is a proposition.
P(n+ 1) is a predicate.
P(n) + 1 is a type error.
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