Statements, Proofs, and Contradiction

Robert Y. Lewis
CS 02202024
January 26, 2024

Overview

1 Propositions (1.1)

2 Predicates (1.2)

What's a proposition?

Definition. A proposition is a statement that is either true or false.
■ Proposition 1: $2+3=5$.

- Proposition 2: $1+1=3$.
- Proposition 3: The sum of any two odd numbers is even.

■ Proposition 4: The product of any two odd numbers is even.
We'll stick with mathematical propositions in this class.

- Proposition 5: Rob has a beautiful singing voice.

■ Proposition? 6: Every action has an equal but opposite reaction.

- Not-a-Proposition 7: How many students are in this class?

How can we tell if a proposition is true?

Definition: A perfect square is a number that can be written n^{2} for some integer n.

- Proposition 8: There is a two-digit perfect square whose final digit is 4. True. An example is $8^{2}=64$.
- Proposition 9: There is a two-digit perfect square whose final digit is 8 . False. I can't show you an example, because there is no such example. I could list all the two digit perfect squares, though: 16, 25, 36, 49, 64, 81. All other perfect squares are either shorter or longer. None end in 8.

Proposition about numbers

Definition: A perfect square is a number that can be written n^{2} for some integer n.

- Proposition 10: There is perfect square whose final digit is 4. True. We showed it for two-digit perfect squares, so that's still true when we broaden the set of possibilities.
■ Proposition 11: There is a perfect square whose final digit is 8 .
False. The approach of exhaustively listing the possibilities to show it is false doesn't work this time. We'll need another technique.

Final digits of perfect squares

Define $p(n)::=n^{2} \bmod 10$, the remainder we get if we take n, square it, and divide by 10. It's the last digit of the square.
$p(0)=0$
$p(1)=1$
$p(2)=4$
$p(3)=9$
$p(4)=6$
$p(5)=5$
$p(6)=6$
$p(7)=9$
$p(8)=4$
$p(9)=1$
$p(10)=0$
$p(11)=1$
repeating? (Save for later.)

Is this proposition true?

Definition: A prime is an integer greater than one that is not divisible by any other integer greater than 1.

Example: 2, 3, 5, 7, 11, 13, 17, \ldots.
■ Proposition 12: For every nonnegative integer, n, the value of $n^{2}+n+41$ is prime.
Define $p(n)::=n^{2}+n+41$.
$p(0)=41$, which is prime.
$p(1)=43$, which is prime.
$p(2)=47$, which is prime.
$p(10)=151$, which is prime.
Looking good!
$p(40)=1681=41^{2}$, not prime. So, no. Counterexample. Short proof (but hard to find).

Aside

The book says: There is no non-constant polynomial $p(n)$ with nonnegative integer coefficients that generates only primes.

Suppose there were such a polynomial p.
Let m be the constant coefficient of p (that's not multiplied by a power of n). Since $m=p(0)$ and $p(0)$ is prime, m must be prime. In particular it can't be 0 or 1.
Now, consider $p(m)$. All of the terms of $p(m)$ are divisible by m, so $p(m)$ is as well. Since the polynomial is not constant, and coefficients are nonnegative, $p(m)>m$. So $p(m)$ is divisible by a number other than 1 or itself, so it is not prime: a contradiction.
For our example $p(n)::=n^{2}+n+41, p(41)=1763=43 \times 41$.

Some useful notation

■ \mathbb{Z} is the integers $\{\ldots,-4,-3,-2,1,0,1,2,3,4, \ldots\}$.
■ \mathbb{Z}^{+}is the positive integers $\{1,2,3,4, \ldots\}$.

- \mathbb{N} is the non-negative integers $\{0,1,2,3,4, \ldots\}$.

■ \forall means "for all." It's an upside down A.

- \exists means "exists." It's a backwards E. (Or is it?)
- Examples:
$\exists n: \mathbb{N}, n^{2} \bmod 10=6$.
Can show exists is true with an example ($n=6$).
$\forall n: \mathbb{N}, n^{2}+n+41$ is prime.
Can show forall is false with a counterexample ($n=40$).
Sometimes we write these as $\exists n \in \mathbb{N}$ and $\forall n \in \mathbb{N}$.

Toughies

- Proposition 13 (Euler's conjecture): $a^{4}+b^{4}+c^{4}=d^{4}$ has no solution when a, b, c, and d are positive integers.
$\forall a: \mathbb{Z}^{+}, \forall b: \mathbb{Z}^{+}, \forall c: \mathbb{Z}^{+}, \forall d \mathbb{Z}^{+}, a^{4}+b^{4}+c^{4} \neq d^{4}$.
$\forall a b c d: \mathbb{Z}^{+}, a^{4}+b^{4}+c^{4} \neq d^{4}$.
No! $a=95800, b=217519, c=414560, d=422481$. (Took 200+ years to resolve.)
- Proposition 14: $313\left(x^{3}+y^{3}\right)=z^{3}$ has no solution when $x, y, z \in \mathbb{Z}^{+}$. Also, no; but, shortest counterexample is 1000+ digits long.
■ Proposition 15: Every map can be colored with 4 colors so that adjacent regions have different colors.
Yes, and the proof is very very long.
■ Proposition 13 (Goldbach's conjecture): Every even integer greater than 2 is the sum of two primes.
Remains unresolved since 1742.

Who decides "truth"?

■ We defined "prime number"
■ And "integer," and "divisible," and " 1, " ...
■ The goal of mathematics is "common knowledge": give anyone the definitions, and a proof or counterexample, and they can check it. Even a computer could do it.

- This is why we're focusing on mathematical propositions here. Truth in the real world is a little complicated.

What's a Predicate?

A predicate is a proposition whose truth depends on the value of one or more variables. Examples:

- n is odd.

True for $n=25$, false for $n=98$.

- The sum of two numbers a and b is prime.

True for $a=3$ and $b=4$. False for $a=4$ and $b=6$.

- x is an integer and $2 x$ is even.

True for all integers x.

Predicates to propositions

Predicate notation:
$P(n)::=$ " n is a perfect square".
$P(16)$ is true and $P(10)$ is false.
If $P(n)$ is a predicate, then:

- $P(22)$ is a proposition.
- $\forall n, P(n)$ is a proposition.
- $\exists n, P(n)$ is a proposition.
- $P(n+1)$ is a predicate.
- $P(n)+1$ is a type error.

