Message Passing, RSA Encryption

Robert Y. Lewis
CS 02202024
March 11, 2024

Overview

1 Sending Secrets

2 Arithmetic with an Arbitrary Modulus (8.7)

- Relative Primality (8.7.1)
- Euler's Theorem (8.7.2)
- Computing Euler's ϕ Function (8.7.3)

3 The RSA Algorithm (8.11)

Sending messages

Motivations:

- Why do we send each other messages? Communication is a pretty human activity. Coordination is a practical application.
- Why would we want them to be secret? Competition. Gossiping. Surprise. Private information.
- Why might the message need to be encrypted? Message can be intercepted, stolen/broadcast by a third party, accidentally revealed like by being left on screen connected to projector. Communication channel is open.

Encoding messages

We'll assume all messages are fixed-length bit strings.
Is that sufficiently general? Can we encode arbitrary messages this way?

The Alphabet

00000	space	01000	H	10000	P	11000	X
00001	A	01001	I	10001	Q	11001	Y
00010	B	01010	J	10010	R	11010	Z
00011	C	01011	K	10011	S	11011	.
00100	D	01100	L	10100	T	11100	!
00101	E	01101	M	10101	U	11101	?
00110	F	01110	N	10110	V	11110	,
00111	G	01111	O	10111	W	11111	@

One-time pad: Encryption

Alice and Bob share 60 random bits (the "one-time pad") in advance:
101100001100000001101001000010
000001100000110010011111111110
Alice: Wants to send a private message to Bob. She turns it into a sequence of 60 bits. She then computes the bitwise "xor" of her message and the one-time pad and transmits it:

001011011100101000011110110001
000010110110100111000100011110

One-time pad: Decryption

Bob: Wants to read Alice's message.
001011011100101000011110110001 000010110110100111000100011110

How can he recover it? Bitwise "xor" with the one-time pad will undo the encryption operation.
encrypted line 1: $\quad 001011011100101000011110110001$
pad line 1: $\quad 101100001100000001101001000010$
xor line 1: $\quad 100111010000101001110111110011$
text line 1: STEGOS
encrypted line 2: 000001100000110010011111111110
pad line 2: $\quad 000010110110100111000100011110$
xor line 2: $\quad 000011010110010101011011100000$
text line 2: \quad A U R U S _

One-time pad: Cracking

Eve: Sees the encrypted message and wants to understand it. She doesn't have the one-time pad.

The encrypted message gives no information about the unencrypted message. All possible messages are equally likely.

Although, if one-time pad is reused, information is leaked.
Plus, The one-time pad is essential to the one-time pad scheme. How can Alice and Bob agree on the one-time pad if Eve is listening?

Definition

Definition: Integers that have no prime factor in common are called relatively prime. In other words, they have no common divisor greater than 1 . $\operatorname{Or} \operatorname{gcd}(a, b)=1$. Also, called "co-prime".

Example: 9 and 14 are relatively prime. Neither are prime. But, they have no prime factors in common. Here, "relative" refers to "relative to each other", not "kinda".

What's not relatively prime to 17 ? 34 , sure. But, in general? Precisely the multiples of 17. True of any prime p.

Multiplicative inverse

Lemma: Let n be a positive integer. If k is relatively prime to n, then there exists an integer k^{-1} such that:

$$
k \cdot k^{-1} \equiv 1 \quad(\bmod n)
$$

Proof: Since n and k are relatively prime, $\operatorname{gcdcombo}(n, k)=(s, t, 1)$. t must be the multiplicative inverse of $k(\bmod n)$:

$$
s \cdot n+t \cdot k=1 \text { implies } t \cdot k \equiv 1(\bmod n)
$$

Corollary: Suppose n is a positive integer and k is relatively prime to n. Then,

$$
a k \equiv b k \quad(\bmod n) \quad \text { implies } \quad a \equiv b \quad(\bmod n)
$$

Proof: Multiply both sides by k^{-1} and simplify.

Relatively prime permutations

Lemma: Suppose n is a positive integer and k is relatively prime to n. Let $k_{1}, k_{2}, \cdots, k_{r}$ be all the integers in the interval $[1, n)$ that are relatively prime to n. Then, the sequence of remainders on division by n of

$$
k_{1} \cdot k, k_{2} \cdot k, \ldots, k_{r} \cdot k
$$

is a permutation of the sequence $k_{1}, k_{2}, \cdots, k_{r}$.
Example: $n=18, k=5$.

$$
\begin{array}{r|ccccccc}
j & 1 & 2 & 3 & 4 & 5 & 6 & =r \\
k_{j} & 1 & 5 & 7 & 11 & 13 & 17 & \\
k_{j} \cdot k & 5 & 25 & 35 & 55 & 65 & 85 & \\
k_{j} \cdot k \bmod n & 5 & 7 & 17 & 1 & 11 & 13 &
\end{array}
$$

Relatively Prime Permutation Proof (for reference)

Proof: We will show that the remainders in the first sequence are all distinct and are equal to some member of the sequence of $k_{j} s$. Since the two sequences have the same length, the first must be a permutation of the second. (Kind of a bijection argument.)
If $k \cdot k_{j} \equiv k \cdot k_{j^{\prime}} \quad(\bmod n)$, then $k_{j} \equiv k_{j^{\prime}} \quad(\bmod n)$ by the Cancelation rule. Thus, the remainders are all distinct.

Next, we show that each remainder in the first sequence equals one of the k_{j} s. By assumption, k_{i} and k are relatively prime to n, and therefore so is $k_{i} k$ by the "you can't split a prime" property. So, $\operatorname{gcd}\left(k \cdot k_{i}, n\right)=1$. But, by the derivation of Euclid's algorithm $\operatorname{gcd}\left(k \cdot k_{i}, n\right)=\operatorname{gcd}\left(n, \operatorname{rem}\left(k \cdot k_{i}, n\right)\right)$. Thus, rem $\left(k \cdot k_{i}, n\right)$ has a GCD of 1 with n, so it's on the list of relatively prime integers to n. QED.

Fermat's little theorem (reminder)

Theorem: Suppose p is prime and k is not a multiple of p. Then:

$$
k^{p-1} \equiv 1 \quad(\bmod p)
$$

Since $k^{p-1} \equiv 1 \quad(\bmod p)$ and $k^{p-1}=k \cdot k^{p-2}$, that tells us that k^{p-2} is the multiplicative inverse for k.

Only for prime p !

Remainder reminder: Solving equation mod prime

```
3x+9\equiv2 (mod}11
3x\equiv-7
3x\equiv4
3 11-2.3x\equiv3 311-2.4
x\equiv\mp@subsup{3}{}{11-2}.4
x\equiv4\times4=16
x\equiv5
```

$(\bmod 11)$
(mod11) additive shift
(mod11) pre-mod
(mod11) multiply both sides
(mod11) Fermat's little theorem
(mod11) Maybe some repeated squaring
(mod11) modding

Double check: $3 \times 5+9=15+9=24=2(\bmod 11)$.
Key step: $3^{-1}=4(\bmod 11)$.
Via Fermat's little theorem: $3^{11-2} \bmod 11=19683 \bmod 11=4$.
But what if we wanted to work mod not-a-prime?

Counting relatively prime numbers

$\phi(n)$: The number of integers in $[0, n)$ that are relatively prime to n.
Examples:
■ $\phi(7)=|\{1,2,3,4,5,6\}|=6$.
■ $\phi(18)=|\{1,5,7,11,13,17\}|=6$.

- $\phi(20)=|\{1,3,7,9,11,13,17,19\}|=8$.
- $\phi(p)=p-1$ if p is prime. Everybody below p is relatively prime to prime p !

Called Euler's ϕ or totient function.

Euler's Theorem

Theorem: Suppose n is a positive integer and k is relatively prime to n. Then,

$$
k^{\phi(n)} \equiv 1 \quad(\bmod n)
$$

Proof: Let $k_{1}, k_{2}, \ldots, k_{r}$ denote all integers relatively prime to n where $k_{i} \in[0, n)$. So, $\phi(n)=r$.

$$
\begin{aligned}
& =\operatorname{rem}\left(k_{1} \cdot k, n\right) \cdot \operatorname{rem}\left(k_{2} \cdot k, n\right) \cdots \cdots \operatorname{rem}\left(k_{r} \cdot k, n\right) & & \text { rel. prime perm. } \\
k_{1} \cdot k_{2} \cdots \cdots k_{r} & =\left(k_{1} \cdot k\right) \cdot\left(k_{2} \cdot k\right) \cdots \cdots\left(k_{r} \cdot k\right)(\bmod n) & & \text { pre-mod } \\
& =k_{1} \cdot k_{2} \cdots \cdots k_{r} \cdot k^{r} \quad(\bmod n) & & \text { regroup }
\end{aligned}
$$

Applying the Cancellation lemma, the claim is proven. QED.
If we could compute $\phi(n)$, we could use it to compute multiplicative inverses. Can we?

Phi of product of two distinct primes

Lemma: For distinct primes p and $q, \phi(p q)=(p-1)(q-1)$.
Proof: Since p and q are prime, any number that is not relatively prime to $p q$ must be a multiple of p or a multiple of q. Among the $p q$ numbers in $[0, p q$), there are precisely q multiples of p and p multiples of q. Since p and q are relatively prime, the only number in $[0, p q)$ that is a multiple of both p and q is 0 . Hence, there are $p+q-1$ numbers in $[0, p q)$ that are not relatively prime to $p q$. So, $\phi(p q)=p q-(p+q-1)=$ $(p-1)(q-1)$ as claimed. QED.

Phi for arbitrary numbers

Theorem: If p is prime, then $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$ for $k \geq 1$. If a and b are relatively prime, $\phi(a b)=\phi(a) \phi(b)$.
Example:
$\phi(750)$
$=\phi\left(2 \times 3 \times 5^{3}\right)$
$=\phi(2) \times \phi(3) \times \phi\left(5^{3}\right)$
$=(2-1) \times(3-1) \times\left(5^{3}-5^{2}\right)$
$=2 \times(125-25)$
$=200$.
Double check that this rule correctly generalizes the rules we already discussed for $\phi(p)$ and $\phi(p q)$.

Note: Practical if factorization is known. Otherwise, not so much.

An asymmetry

"Practical if factorization is known. Otherwise, not so much." This points to an asymmetry in difficulty: if someone knows the factors of n, it is much easier for them to compute inverses mod n.

We can exploit this asymmetry of difficulty!

Public key cryptography

Bob wants to be able to receive secret messages. Bob creates a private key, which must remain secret. Bob also creates a public key, which is made public. Anyone, Alice say, who wants to send a secret message to Bob can encrypt it with Bob's public key. Only Bob can decrypt such messages (using his private key).

No other communication or agreements or secret emails are needed.

Beforehand

1 Bob generates two distinct (hundreds of digits long) primes, p and q and keeps them hidden.

2 Bob sets $n::=p q$.
3 Bob selects an integer $e \in[1, n)$ such that $\operatorname{gcd}(e,(p-1)(q-1))=1$. The public key is the pair (e, n).
4 Compute $d \in[1, n)$ such that $d e \equiv 1(\bmod (p-1)(q-1))$. The private key is the pair (d, n).

Time to send and receive

Encryption: Alice wants to send unencryted message m. She computes and then sends the encrypted message $m^{*}=\operatorname{rem}\left(m^{e}, n\right)$. (Uses e and n, which are public.)

Decryption: Bob receives m^{*}. He decrypts by computing $m^{\prime}=\operatorname{rem}\left(\left(m^{*}\right)^{d}, n\right)$. (Uses d and n, where d is private.)

Is this correct? Is this secure?

