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Sending messages

Motivations:
Why do we send each other messages? Communication is a pretty human activity.
Coordination is a practical application.
Why would we want them to be secret? Competition. Gossiping. Surprise. Private
information.
Why might the message need to be encrypted? Message can be intercepted,
stolen/broadcast by a third party, accidentally revealed like by being left on screen
connected to projector. Communication channel is open.
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Encoding messages

We’ll assume all messages are fixed-length bit strings.

Is that sufficiently general? Can we encode arbitrary messages this way?
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The Alphabet

00000 space 01000 H 10000 P 11000 X
00001 A 01001 I 10001 Q 11001 Y
00010 B 01010 J 10010 R 11010 Z
00011 C 01011 K 10011 S 11011 .
00100 D 01100 L 10100 T 11100 !
00101 E 01101 M 10101 U 11101 ?
00110 F 01110 N 10110 V 11110 ,
00111 G 01111 O 10111 W 11111 @
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One-time pad: Encryption

Alice and Bob share 60 random bits (the “one-time pad”) in advance:

10110 00011 00000 00110 10010 00010
00000 11000 00110 01001 11111 11110

Alice: Wants to send a private message to Bob. She turns it into a sequence of 60 bits.
She then computes the bitwise “xor” of her message and the one-time pad and
transmits it:

00101 10111 00101 00001 11101 10001
00001 01101 10100 11100 01000 11110
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One-time pad: Decryption
Bob: Wants to read Alice’s message.

00101 10111 00101 00001 11101 10001
00001 01101 10100 11100 01000 11110

How can he recover it? Bitwise “xor” with the one-time pad will undo the encryption
operation.

encrypted line 1: 00101 10111 00101 00001 11101 10001
pad line 1: 10110 00011 00000 00110 10010 00010
xor line 1: 10011 10100 00101 00111 01111 10011
text line 1: S T E G O S
encrypted line 2: 00000 11000 00110 01001 11111 11110
pad line 2: 00001 01101 10100 11100 01000 11110
xor line 2: 00001 10101 10010 10101 10111 00000
text line 2: A U R U S _
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One-time pad: Cracking

Eve: Sees the encrypted message and wants to understand it. She doesn’t have the
one-time pad.

The encrypted message gives no information about the unencrypted message. All
possible messages are equally likely.

Although, if one-time pad is reused, information is leaked.

Plus, The one-time pad is essential to the one-time pad scheme. How can Alice and Bob
agree on the one-time pad if Eve is listening?
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Relative Primality (8.7.1)

Definition

Definition: Integers that have no prime factor in common are called relatively prime.

In other words, they have no common divisor greater than 1. Or gcd(a, b) = 1. Also,
called “co-prime”.

Example: 9 and 14 are relatively prime. Neither are prime. But, they have no prime
factors in common. Here, “relative” refers to “relative to each other”, not “kinda”.

What’s not relatively prime to 17? 34, sure. But, in general? Precisely the multiples of 17.
True of any prime p.
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Relative Primality (8.7.1)

Multiplicative inverse

Lemma: Let n be a positive integer. If k is relatively prime to n, then there exists an
integer k−1 such that:

k · k−1 ≡ 1 (modn).

Proof: Since n and k are relatively prime, gcdcombo(n, k) = (s, t, 1). t must be the
multiplicative inverse of k (mod n):

s · n+ t · k = 1 implies t · k ≡ 1 (modn).

Corollary: Suppose n is a positive integer and k is relatively prime to n. Then,
ak ≡ bk (modn) implies a ≡ b (modn)

Proof: Multiply both sides by k−1 and simplify.
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Relative Primality (8.7.1)

Relatively prime permutations

Lemma: Suppose n is a positive integer and k is relatively prime to n. Let k1, k2, · · · , kr
be all the integers in the interval [1, n) that are relatively prime to n. Then, the sequence
of remainders on division by n of

k1 · k, k2 · k, . . . , kr · k

is a permutation of the sequence k1, k2, · · · , kr.

Example: n = 18, k = 5.

j 1 2 3 4 5 6 = r
kj 1 5 7 11 13 17

kj · k 5 25 35 55 65 85
kj · k mod n 5 7 17 1 11 13
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Relative Primality (8.7.1)

Relatively Prime Permutation Proof (for reference)

Proof: We will show that the remainders in the first sequence are all distinct and are
equal to some member of the sequence of kjs. Since the two sequences have the same
length, the first must be a permutation of the second. (Kind of a bijection argument.)

If k · kj ≡ k · kj′ (modn), then kj ≡ kj′ (modn) by the Cancelation rule. Thus, the
remainders are all distinct.

Next, we show that each remainder in the first sequence equals one of the kjs. By
assumption, ki and k are relatively prime to n, and therefore so is kik by the “you can’t
split a prime” property. So, gcd(k · ki, n) = 1. But, by the derivation of Euclid’s
algorithm, gcd(k · ki, n) = gcd(n, rem(k · ki, n)). Thus, rem(k · ki, n) has a GCD of 1 with
n, so it’s on the list of relatively prime integers to n. QED.
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Euler’s Theorem (8.7.2)

Fermat’s little theorem (reminder)

Theorem: Suppose p is prime and k is not a multiple of p. Then:

kp−1 ≡ 1 (modp).

Since kp−1 ≡ 1 (modp) and kp−1 = k · kp−2, that tells us that kp−2 is the multiplicative
inverse for k.

Only for prime p!
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Euler’s Theorem (8.7.2)

Remainder reminder: Solving equation mod prime
3x + 9 ≡ 2 (mod11)
3x ≡ −7 (mod11) additive shift
3x ≡ 4 (mod11) pre-mod
311−2 · 3x ≡ 311−2 · 4 (mod11) multiply both sides
x ≡ 311−2 · 4 (mod11) Fermat’s little theorem
x ≡ 4 × 4 = 16 (mod11) Maybe some repeated squaring
x ≡ 5 (mod11) modding

Double check: 3 × 5 + 9 = 15 + 9 = 24 = 2 (mod11).

Key step: 3−1 = 4 (mod11).

Via Fermat’s little theorem: 311−2 mod 11 = 19683 mod 11 = 4.

But what if we wanted to work mod not-a-prime?
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Euler’s Theorem (8.7.2)

Counting relatively prime numbers

ϕ(n): The number of integers in [0, n) that are relatively prime to n.

Examples:
ϕ(7) = |{1, 2, 3, 4, 5, 6}| = 6.
ϕ(18) = |{1, 5, 7, 11, 13, 17}| = 6.
ϕ(20) = |{1, 3, 7, 9, 11, 13, 17, 19}| = 8.
ϕ(p) = p− 1 if p is prime. Everybody below p is relatively prime to prime p !

Called Euler’s ϕ or totient function.
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Euler’s Theorem (8.7.2)

Euler’s Theorem

Theorem: Suppose n is a positive integer and k is relatively prime to n. Then,

kϕ(n) ≡ 1 (modn).

Proof: Let k1, k2, . . . , kr denote all integers relatively prime to nwhere ki ∈ [0, n). So,
ϕ(n) = r.

k1 · k2 · · · · · kr
= rem(k1 · k, n) · rem(k2 · k, n) · · · · · rem(kr · k, n) rel. prime perm.
= (k1 · k) · (k2 · k) · · · · · (kr · k) (modn) pre-mod
= k1 · k2 · · · · · kr · kr (modn) regroup

Applying the Cancellation lemma, the claim is proven. QED.

If we could compute ϕ(n), we could use it to compute multiplicative inverses. Can we?
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Computing Euler’s ϕ Function (8.7.3)

Phi of product of two distinct primes

Lemma: For distinct primes p and q, ϕ(pq) = (p− 1)(q− 1).

Proof: Since p and q are prime, any number that is not relatively prime to pqmust be a
multiple of p or a multiple of q. Among the pq numbers in [0, pq), there are precisely q
multiples of p and pmultiples of q. Since p and q are relatively prime, the only number
in [0, pq) that is a multiple of both p and q is 0. Hence, there are p+ q− 1 numbers in
[0, pq) that are not relatively prime to pq. So, ϕ(pq) = pq− (p+ q− 1) =
(p− 1)(q− 1) as claimed. QED.
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Computing Euler’s ϕ Function (8.7.3)

Phi for arbitrary numbers
Theorem: If p is prime, then ϕ(pk) = pk − pk−1 for k ≥ 1. If a and b are relatively prime,
ϕ(ab) = ϕ(a)ϕ(b).

Example:

ϕ(750)
= ϕ(2 × 3 × 53)
= ϕ(2)× ϕ(3)× ϕ(53)
= (2 − 1)× (3 − 1)× (53 − 52)
= 2 × (125 − 25)
= 200.

Double check that this rule correctly generalizes the rules we already discussed for ϕ(p)
and ϕ(pq).

Note: Practical if factorization is known. Otherwise, not so much.
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Computing Euler’s ϕ Function (8.7.3)

An asymmetry

“Practical if factorization is known. Otherwise, not so much.” This points to an
asymmetry in difficulty: if someone knows the factors of n, it is much easier for them to
compute inverses mod n.

We can exploit this asymmetry of difficulty!
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Public key cryptography

Bob wants to be able to receive secret messages. Bob creates a private key, which must
remain secret. Bob also creates a public key, which is made public. Anyone, Alice say,
who wants to send a secret message to Bob can encrypt it with Bob’s public key. Only
Bob can decrypt such messages (using his private key).

No other communication or agreements or secret emails are needed.
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Beforehand

1 Bob generates two distinct (hundreds of digits long) primes, p and q and keeps
them hidden.

2 Bob sets n ::= pq.
3 Bob selects an integer e ∈ [1, n) such that gcd(e, (p− 1)(q− 1)) = 1. The public

key is the pair (e, n).
4 Compute d ∈ [1, n) such that de ≡ 1 (mod(p− 1)(q− 1)). The private key is the

pair (d, n).
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Time to send and receive

Encryption: Alice wants to send unencryted messagem. She computes and then sends
the encrypted messagem∗ = rem(me, n). (Uses e and n, which are public.)

Decryption: Bob receivesm∗. He decrypts by computingm′ = rem((m∗)d, n). (Uses d
and n, where d is private.)
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Is this correct? Is this secure?
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