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Format

Different format today. We’re going to look at one problem and some failed attempts to
solve it, along with a solution that actually works.
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Reminder: graphs and trees

A graph G has a set of vertices V(G) and an adjacency relation on those vertices
(equivalently, a set of edges).

A tree is a connected graph with no cycles.
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Counting trees

How many ways can we connect n vertices together into a tree?

Trees on 2 and trees on 3:
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Trees on 4
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What we know so far

Trees: Connected, acyclic.

n trees
2 1
3 3
4 16
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Depth and parents
We can define any vertex of a tree to be its root.

Definition: Given a tree G and a choice of root r ∈ V(G), the depth of u ∈ V(G), depr(u)
is the length of the simple path from r to u.

Depth is well defined because every pair of nodes in a tree has a unique simple path
between them.

Definition: Given a tree G and a choice of root r ∈ V(G), u is the parent of v if
(u, v) ∈ E(G) and depr(u) = depr(v)− 1.
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Choosing edges

Ok, first thought. A tree on n vertices has n− 1 edges out of all possible edges, since
each vertex (except the root) is connected to exactly one parent. So pick these edges:

( (n
2
)

n− 1

)
.

n trees
2 1
3 3
4 20 > 16

We counted cycles that aren’t trees.
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Ways to add a vertex
So, let’s be careful to only generate trees. Here’s the thought. Consider a tree on n
vertices. We can add vertex n+ 1 and connect it into the tree n different ways. We’re
guaranteed that the new graph is connected and acyclic (a tree!).

So, 2 vertices make 1 tree. Adding the 3rd vertex creates 2 times more. Adding the 4th
vertex creates 3 times more.

Generalizing, we get (n− 1)! trees.

n trees
2 1
3 2 < 3
4 6 < 16

Now, we’re only counting trees, but we’re missing some trees. In particular, we’re
missing trees where the last vertex is somewhere in the middle.
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Generated 4 trees



Puzzle Attempt 1: Choosing edges Attempt 2: Building up Attempt 3 Prufer codes

More careful growing

When we add in vertex n+ 1, the other n vertices might not be a tree. They might be a
forest. In general, vertex n+ 1 will have one edge to each connected component in the
forest. For the edge to connected component i, it will have a choice of which of the
vertices in the connected component to connect to.

You can almostwrite down an expression, but it’s complicated and not clear how to
simplify it. The basic idea is consider all the ways of making a tree with n′ vertices for all
n′ ≤ n, then all the ways n vertices can be partitioned into clusters, then sum and
multiply...

But even the question of how many partitions there are for n items is hairy. See:
https://oeis.org/A000110 .
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Better way to look at it

Sometimes there’s just a better way to look at it. It’s definitely not obvious (to me!). But
it’s clever and gives a nice clean answer.

1 Create a “normal form” for trees. That way, we can at least notice when two
different trees are actually the same.

2 Find a compact encoding for these trees. Here, “compact” means no extraneous
information.

3 Then, we can show we have a bijection (!) between trees and the encoding.
4 If we’re lucky, it’ll be easier to count encodings than trees.



Puzzle Attempt 1: Choosing edges Attempt 2: Building up Attempt 3 Prufer codes

Normal form for trees

Choose vertex n to be the root. Order children smallest (left) to biggest (right). There are
no other choices.
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Encoding a tree

Every vertex has a unique parent. So, we could just give the parent for each vertex: 3 7 4
5 11 3 10 2 10 4.

List n− 1 numbers (since root has no parent), each with a choice of n− 1 numbers
(can’t pick yourself!). That’s (n− 1)n−1.

Anything extraneous? Yes, can encode a loop: 3 1 2 5.
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Sanity check

Could it be (n− 1)n−1?

n trees
2 1
3 4 > 3
4 27 > 16

Yeah, we’re definitely overcounting. But we’re guaranteed not to undercount. Every tree
has a representation in this scheme. But some representations do not produce trees. It’s
not a bijection.
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Prufer rule
Repeat the following procedure n− 2 times. Find the smallest valued leaf. Write down
its parent. Delete the leaf.

3 3 4 2 7 10 10 4 5
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Recover a tree
We can process any tree into a list. But can we recover the tree from the list? Before we
prove that we can, let’s do an example:

3 3 4 2 7 10 10 4 5
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4 by 4
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Thinking inductively
Here’s a 6-vertex tree in Prufer encoding: 1 1 3 1.

In what sense is it built out of a 5-vertex encoding? Take the vertex x that is the “first”
leaf. Here, x = 2. Remove it, then renumber the vertices, decrementing anything larger
than x. The thing to note is that the resulting tree and encoding still match!
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Proof

Theorem: For every string a ∈ [1, n]n−2 (n ≥ 2), there is a unique tree T.

Proof: Build-down induction on n.

Base Case (n = 2): There is only one tree (a 1–2 segment) and only one encoding string
(the null string).

Inductive Step (n+ 1): Consider a string a of length n− 1. In the tree T encoded by a,
the leaf with the smallest label x must be linked to a1.

Consider the string a′ formed by removing a1 from a and then subtracting one from
every value in a that’s larger than x. By the inductive hypothesis, there is a unique tree
T0 constructed from a′. We can construct a unique tree T from T0 by adding 1 to the
values in T0 that are x or above, then adding the edge (x, a1).
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Summing up

We have a scheme for encoding trees as lists. It always works. We have a scheme for
turning lists into trees. It always works. We have a bijection.

How many lists? n− 2 choices of numbers from 1 to n. So, nn−2. Does that fit?

n trees
2 1
3 3
4 16
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