Intro to Probability

Robert Y. Lewis

CS 02202024

April 4, 2024

Overview

1 Probability Spaces (16.5.1)

2 Probability Rules from Set Theory (16.5.2)

3 Uniform Probability Spaces (16.5.3)

4 Infinite Probability Spaces (16.5.4)

Definitions of probability spaces

Definition: A countable sample space \mathcal{S} is a nonempty countable(*) set.
Definition: An element $\omega \in \mathcal{S}$ is called an outcome.
Definition: A subset of \mathcal{S} is called an event.
Definition: A probability function on a sample space \mathcal{S} is a function $\operatorname{Pr}: \mathcal{S} \rightarrow \mathbb{R}$ such that

- $\operatorname{Pr}[\omega] \geq 0$ for all $\omega \in \mathcal{S}$, and
- $\sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega]=1$.

Definition: A sample space together with a probability function is called a probability space. For any event $E \subseteq \mathcal{S}$, the probability of E is defined to be the sum of the probabilities of outcomes in E :

$$
\operatorname{Pr}[E]::=\sum_{\omega \in E} \operatorname{Pr}[\omega] .
$$

Countability

Side note: a set S is countable if it is finite or there is a bijective function $\mathbb{N} \rightarrow S$.
Intuition: we can "list" the elements of S. $\left\{s_{0}, s_{1}, s_{2}, \ldots\right\}$. Maybe the list ends, maybe it doesn't...

We'll mostly deal with finite probability spaces.

Sum rule

Rule: If $\left\{E_{0}, E_{1}, \ldots,\right\}$ is collection of disjoint events, then

$$
\operatorname{Pr}\left[\bigcup_{n \in \mathbb{N}} E_{n}\right]=\sum_{n \in \mathbb{N}} \operatorname{Pr}\left[E_{n}\right] .
$$

Like the sum rule in counting.
Example: I counted plants at the CS22 nursery. 60\% of the plants had red flowers, 30% had yellow flowers, and 10% had no flowers. If I pick a plant at random, the probability that it has flowers is 90%.

What is sample space? What are events?

Complement rule

A new day, a new collection of plants:

set	type	Pr
A	Red flowers	0.60
B	Yellow flowers	0.25
$A \cap B$	both	0.15
$\bar{A} \cap \bar{B}$	neither	0.30

Since we know that the sets A and \bar{A} are disjoint and cover all possibilities, the sum rule tells us that $\operatorname{Pr}[A]+\operatorname{Pr}[\bar{A}]=1$.
Rule: $\operatorname{Pr}[\bar{A}]=1-\operatorname{Pr}[A]$.
Example: The chance that a plant does not have red flowers is (in symbols) $\operatorname{Pr}[\bar{A}]=$ $1-\operatorname{Pr}[A]=0.40$.

Difference Rule

set	type	Pr
A	Red flowers	0.60
B	Yellow flowers	0.25
$A \cap B$	both	0.15
$\bar{A} \cap \bar{B}$	neither	0.30

Rule: $\operatorname{Pr}[B \backslash A]=\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$
Example: The chance that a plant has red flowers but not yellow flowers is (in symbols) $\operatorname{Pr}[A \backslash B]=\operatorname{Pr}[A]-\operatorname{Pr}[A \cap B]=0.45$.
Proof: Follows from the Sum Rule because B is the union of the disjoint sets $B-A$ and $A \cap B$.

Inclusion-Exclusion

set	type	Pr
A	Red flowers	0.60
B	Yellow flowers	0.25
$A \cap B$	both	0.15
$\bar{A} \cap \bar{B}$	neither	0.30

Rule: $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$

Example: The chance that a plant has flowers is (in symbols) $\operatorname{Pr}[A \cup B]=$ $\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]=0.70$.
Proof: Follows from the Sum and Difference Rules, because $A \cup B$ is the union of the disjoint sets A and $B \backslash A$.

Boole's Inequality

set	type	Pr
A	Red flowers	0.60
B	Yellow flowers	0.25
$A \cap B$	both	0.15
$\bar{A} \cap \bar{B}$	neither	0.30

Rule: $\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$
Example: The chance that a plant has flowers is (in symbols) $\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]=$ 0.85 .

Proof by inclusion-exclusion and the fact that probabilities are non-negative.

Monotonicity Rule

set	type	Pr
A	Red flowers	0.60
B	Yellow flowers	0.25
$A \cap B$	both	0.15
$\bar{A} \cap \bar{B}$	neither	0.30

Rule: If $A \subseteq B$, then $\operatorname{Pr}[A] \leq \operatorname{Pr}[B]$
Example: The chance that a plant has yellow flowers must be at least as big as the chance that it has both red and yellow flowers.
Proof: $\operatorname{Pr}[B]=\operatorname{Pr}[A \cup(B \backslash A)]=\operatorname{Pr}[A]+\operatorname{Pr}[B-A] \geq \operatorname{Pr}[A]$. First equality because $A \subseteq B$. Then, they add together by the sum rule because the two sets are disjoint. Then, the last inequality holds because probabilities are non-negative.

Puzzle

We surveyed the dinosaurs at Jurassic Park. About 50\% of them were carnivores. About 40% of them were poisonous.

If we pick a dinosaur at random, what's the probability that it's neither a carnivore nor poisonous?

Union bound

Rule:

$$
\operatorname{Pr}\left[E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right] \leq \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]+\cdots+\operatorname{Pr}\left[E_{n}\right] .
$$

Example: The probability that a student has conflict with an exam is 0.001 . What's the probability that any of 320 students have a conflict? Can't assume independence because groups of students take classes together, do sports together. Can't get an exact answer with the information provided.

Union bounds says probability of student 1 or 2 or 3 ... 320 less than or equal to $320 \times 0.001=0.32$.

Used in machine learning all the time.

Uniform

Definition: A finite probability space \mathcal{S} is said to be uniform if $\operatorname{Pr}[\omega]$ is the same for every outcome $\omega \in \mathcal{S}$.

In finite spaces, for any $E \subseteq \mathcal{S}$,

$$
\operatorname{Pr}[E]=\frac{|E|}{|\mathcal{S}|} .
$$

Examples: Sides of a die, cards in a deck.
Contrast with: Vowels vs. consonants, primes vs. composites.

Counting example

What's the probability that 5 coin flips leads to a palindromic sequence?
What's the space of possibilities \mathcal{S} ? The results of 5 coin flips: HTTHH. $|\mathcal{S}|=2^{5}=32$.
What's the event of interest E ? Palindromic results: TTHTT. $|E|=2^{3}=8$. That's because the first 3 flips are "free", then the 4th flip must match the 2nd and the fifth flip must match the first.

The probability, therefore, is $|E| /|\mathcal{S}|=2^{3} / 2^{5}=1 / 2^{2}=1 / 4$.

Three-sided coin

If we want a uniform distribution over two options, we can flip a coin (H/T). If we want a uniform distribution over four options, we can flip two coins (HH/HT/TH/TT). What if we want a uniform distribution over three options?

We could flip two coins and say it's option 1 if both heads, option 2 if both tails, and option 3 if mismatch. Problem? Yes. The probability of mismatch is $\operatorname{Pr}[H T]+\operatorname{Pr}[T H]=1 / 2$. Not $1 / 3-1 / 3-1 / 3$.
HH $1 / 4$

HT $1 / 4$
TH $1 / 4$
TT 1/4

Repeat the trial

We could flip two coins and say it's option 1 if HH , option 2 if TT, option 3 if HT , and do over if TH. Problem? Maybe. There is an infinite number of outcomes...

Procedure selects option 1 if:
■ HH on the first trial
■ or TH on the first trial and HH on the second trial
■ or TH on the first two trials and HH on the third trial

Pr(option 1)
$=1 / 4+1 / 4 \times 1 / 4+1 / 4 \times 1 / 4 \times 1 / 4+\ldots$
$=\sum_{i=1}^{\infty} 1 / 4^{i}$
$=1 / 4 \times \sum_{i=0}^{\infty} 1 / 4^{i}$
$=1 / 4\left(\frac{1}{1-1 / 4}\right)$
$=1 / 4 \times 4 / 3=1 / 3$.

Aside: Geometric sum

$$
\begin{aligned}
x & =\sum_{i=0}^{\infty} p^{i} & & \text { the sum we want } \\
x & =p^{0}+p^{1}+p^{2}+p^{3}+\ldots & & \text { expand } \\
p x & =p^{1}+p^{2}+p^{3}+p^{4}+\ldots & & \text { multiply by } p \\
p^{0}+p x & =p^{0}+p^{1}+p^{2}+p^{3}+p^{4}+\ldots & & \text { add } p^{0} \\
p^{0}+p x & =x & & \text { defn of } x \\
p^{0} & =x-p x & & \text { subtract } p x \\
1 & =x(1-p) & & \text { factor/simplify } \\
\frac{1}{1-p} & =x & & \text { divide by } 1-p
\end{aligned}
$$

Infinite sample space

$$
\begin{aligned}
& \mathcal{S}=\{H H, H T, T T, T H: H H, T H: H T, T H: T T, T H: T H: H H, T H: T H: H T, T H: T H: \\
& T T, \ldots\} \\
& =\left\{(T H)^{n}: H H,(T H)^{n}: H T,(T H)^{n}: T T \mid n \in \mathbb{N}\right\}
\end{aligned}
$$

The probability space is:

$$
\operatorname{Pr}\left((T H)^{n}: H H\right)=\operatorname{Pr}\left((T H)^{n}: H T\right)=\operatorname{Pr}\left((T H)^{n}: T T\right)=1 / 4^{n+1} .
$$

$$
\text { Note: } \sum_{n=0}^{\infty} 3 \times 1 / 4^{n+1}=3 / 4 \times \frac{1}{1-1 / 4}=3 / 4 \times 4 / 3=1
$$

Non-negative and sums to one, valid probability space!

