Probability and Independence

Robert Y. Lewis

CS 02202024

April 8, 2024

Overview

1 Independence (17.7)

2 Alternative Formulation (17.6.1)

3 Mutual Independence (17.6.3)

4 A philosophical digression

Probability refresher

A sample space is a set of possible outcomes. An event is a subset of the sample space. A probability function assigns each outcome a probability between 0 and 1 .

Conditional probability

Definition: The conditional probability of event A given event B (with $\operatorname{Pr}[B]>0$) is:

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]} .
$$

Conceptually, if we limit ourselves to the outcomes in B, how likely is an outcome in A ? Example:

- A: Die shows a number divisible by $3 . \operatorname{Pr}[A]=1 / 3$. (3 and 6 from the six possibilities.)
- B : Die shows an odd number. $\operatorname{Pr}[B]=1 / 2$.

■ What does $\operatorname{Pr}[A \cap B]$ mean? Die shows an odd number divisible by $3 . \operatorname{Pr}[A \cap B]=$ 1/6 (only 3).

- What does $\operatorname{Pr}[A \mid B]$ mean? Die shows a number divisible by 3 given that it's odd. $\operatorname{Pr}[A \mid B]=1 / 3$ (probability of picking 3 from $1,3,5$). Also, $\frac{1}{6} / \frac{1}{2}=\frac{1}{6} \times 2=\frac{1}{3}$.

Independence

Definition: Event A is independent of event B iff

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
$$

If $\operatorname{Pr}[B]=0$, we say it is independent of any other event including itself.

Example:

- A: Die shows the maximum or minimum number. $\operatorname{Pr}[A]=1 / 3$. (1, 6 from the six possibilities.)
- B : Die shows an odd number. $\operatorname{Pr}[B]=1 / 2$.
- $\operatorname{Pr}[A \mid B]=1 / 3$. (1 from $1,3,5$.) So, A and B are independent.
- C : Die shows an even number. $\operatorname{Pr}[C]=1 / 2$.
- Are B and C independent? No, $\operatorname{Pr}[C \mid B]=0 \neq \operatorname{Pr}[C]$. Common misconception. Independent does not mean disjoint.

Independent events multiply

Theorem: A is independent of B iff

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B] .
$$

Proof: By cases.
■ Case 1: If $\operatorname{Pr}[A]=0$ or $\operatorname{Pr}[B]=0$, then $\operatorname{Pr}[A \cap B]=0$. Equality and independence are both achieved.
■ Case 2: Otherwise,

$$
\begin{aligned}
A \text { is independent of } B & \Longleftrightarrow \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \text { (def. independence) } \\
& \Longleftrightarrow \operatorname{Pr}[A \cap B] / \operatorname{Pr}[B]=\operatorname{Pr}[A] \text { (def. cond. prob.) } \\
& \Longleftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B] \text { (multiplying across) }
\end{aligned}
$$

Independent coin flips

I flip a fair coin twice.

- A: first flip is heads.
- B: second flip is heads.

Independent events?

Hash collisions

I have a perfect hash function and two pieces of data a and b to insert into a hashtable.

- A: a has a hash collision.
- B : b has a hash collision.

Independent events?
Independence: "knowledge about one event does not give us knowledge about another."

Mutual Independence

Definition: A set of events $E_{1}, E_{2}, \ldots, E_{n}$ is mutually independent iff for all subsets $S \subseteq[1, n]$,

$$
\operatorname{Pr}\left[\bigcap_{j \in S} E_{j}\right]=\prod_{j \in S} \operatorname{Pr}\left[E_{j}\right] .
$$

Example: If we toss n fair coins, the tosses are mutually independent iff for every subset of m coins, the probability that every coin in the subset comes up heads is 2^{-m}.

Pairwise independence isn't mutual independence

If A is independent of B and C, and B and C are independent of each other, how could A, B, and C not be independent??

Example: Jania, Tyler, Carmen each pick a bit 0/1 uniformly at random.

- A: Jania + Tyler $\equiv 1(\bmod 2)$
- B : Tyler + Carmen $\equiv 1(\bmod 2)$
- C: Jania + Carmen $\equiv 1(\bmod 2)$

Claim 1: These events are all pairwise independent.
For example, $\operatorname{Pr}[A]=1 / 2 . \operatorname{Pr}[A \mid B]=\frac{1}{4} / \frac{1}{2}=1 / 2$.
Claim 2: These events are not mutually independent.
$\operatorname{Pr}[A \cap B \cap C]=0$. Not $1 / 8$!
k-wise does not imply $(k+1)$-wise mutual independence.

What are we even measuring?

What does it mean to say:

- The probability that a sequence of 5 coin flips will be all heads is $1 / 32$?
- The probability that it will rain tomorrow is .8 ?

■ The probability that $2^{6972607}-1$ is a prime number is...?

Two interpretations: frequentist vs Bayesian.

Frequentism vs Bayesianism

The frequentist: probability statements only apply to repeatable events. Coin flip example makes sense: if we repeatedly sample from the sample space, the "all heads" event will happen in about $1 / 32$ of the samples. Rain question is meaningless. Prime number question is either 0 or 1 .

The Bayesian: probability statements describe a subjective belief/level of confidence. I'd take either side of a bet with 1:32 odds on the coin flip sequence. I think it's four times more likely to rain tomorrow than not. There's an objective answer to the prime number question, but based on my current information/computation ability, ...

Mathematical probability: tries to be agnostic between these two interpretations.

