Random Variables and Expectations

Robert Y. Lewis

CS 02202024

April 10, 2024

Overview

1 Random Variable Examples (18.1)

- Indicator Random Variables (18.1.1)
- Random Variables and Events (18.1.2)

2 Great Expectations (18.4)

- The Expected Value of a Uniform Random Variable (18.4.1)
- The Expected Value of a Reciprocal Random Variable (18.4.2)

Numerical Values of Outcomes

Sometimes it makes sense to attach a numerical value to each outcome of a probability space.

Example: We ask people to name all the dinosaurs they can.

- Tyrannosaurus, stegosaurus

■ Tyrannosaurus, brontosaurus, stegosaurus, velociraptor

- Tyrannosaurus, brontosaurus, velociraptor, apatosaurus, pterodactyl, diplodocus
- stegosaurus

How many outcomes? 2^{700}, according to Google.
If we want to summarize the results, we might assign each outcome a statistic, that is, a numerical summary. A natural choice is the number of dinosaurs they named: 2, 4, 6, 1 .

Random variable

Definition: A random variable R on a probability space is a function whose domain is the sample space.

Example: Let's say the sample space is a deck of cards and R maps a number card to its value and a face card to 10 and ace to 1 . So, $R(2 \Omega)=2$ and $R(J \&)=10$.
Typically, codomain of R is subset of reals. A random variable is used kind of like a variable, but it is "implemented" as a function.

Coin example

We flip 3 fair coins. Let C be the random variable that is the number of coins that come up heads. Let M be a random variable that is 1 if all three coins come up heads or all three coins come up tails and 0 otherwise. They are random variables in that they map all possible outcomes to values, integers in this case.

Example: $C(T H H)=2 . M(T H H)=0 . C(T T T)=0 . M(T T T)=1$.
C is counting the number of heads, M tells us whether or not all the coins match.

In terms of sample space

$\mathcal{S}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$

$$
\begin{array}{ll}
C(H H H)=3 & C(T H H)=2 \\
C(H H T)=2 & C(T H T)=1 \\
C(H T H)=2 & C(T T H)=1 \\
C(H T T)=1 & C(T T T)=0 \\
M(H H H)=1 & M(T H H)=0 \\
M(H H T)=0 & M(T H T)=0 \\
M(H T H)=0 & M(T T H)=0 \\
M(H T T)=0 & M(T T T)=1
\end{array}
$$

Definition

Definition: An indicator random variable is a random variable that maps every outcome to either 0 or 1. Indicator random variables are also called Bernoulli variables.

Example: The random variable M. It "indicates" whether the three coins match.
Connection between indicator random variables and events. Recall, an event is a subset of the sample space-a set of outcomes. An indicator random variable can be interpreted as a set, since it maps each outcome to whether it is in the set (1) or out of the set (0).

If E is an event, we can define the corresponding indicator random variable I_{E}, where $I_{E}(\omega)=1$ if $\omega \in E$ and 0 otherwise.

Example: If we take E to be the event where all 3 coins match, $M=I_{E}$.

Random Variables and Events (18.1.2)

Partitioning sample space

An indicator random variable partitions sample space:

$$
\underbrace{H H T ~ H T H ~ H T T ~ T H H ~ T H T ~ T T H ~}_{M=0} \underbrace{H H H ~ T T T}_{M=1}
$$

So does any other random variable:

$$
\underbrace{T T T}_{C=0} \underbrace{H T T ~ T H T ~ T T H}_{C=1} \underbrace{H H T ~ H T H ~ T H H}_{C=2} \underbrace{H H H}_{C=3}
$$

Statements about random variables

Each block is a subset of the sample space and therefore an event.
The assertion that $C=2$ defines an event: $\{T H H, H T H, H H T\}$.
$\operatorname{Pr}[C=2]=3 / 8$.
$\operatorname{Pr}[M=1]=1 / 4$.
Statements about random variables can also be viewed as events.
$\operatorname{Pr}[C \leq 1]=1 / 2$.
$\operatorname{Pr}[M \cdot C$ is odd $]=1 / 8$.
This last statement is a funny way of saying "all heads". Why?

Concept

The expected value (often expectation) of a random variable is its mean or probability weighted average.

Example: Define a random variable R to be the alphabetic position of the first letter of the outcome of a coin flip, $R(H)=8, R(T)=20$. The expected value of R is 14 . It is $1 / 2 \times 8+1 / 2 \times 20$.
We write $\mathbb{E}[R]=14$. (Book uses "Ex", but I can't pretend that's ever used.)
Suppose we select a student uniformly at random from the class, and let R be the student's homework 2 score. Then, $\mathbb{E}[R]$ is just the class average. The expected value is a useful thing to know.

Definition

Definition: If R is a random variable defined on a sample space \mathcal{S}, then the expectation of R is

$$
\mathbb{E}[R]::=\sum_{\omega \in \mathcal{S}} R(\omega) \operatorname{Pr}[\omega] .
$$

Example: $\mathbb{E}[C]=\frac{0+1+1+1+2+2+2+3}{8}=3 / 2$.
Example: $\mathbb{E}[M]=\frac{1+0+0+0+0+0+0+1}{8}=1 / 4$.
Exercise for the reader: If E is an event, $\operatorname{Pr}[E]=\mathbb{E}\left[I_{E}\right]$.

Fair die

Let R be the random variable corresponding to a fair die. Here, the outcomes are numbers, so we'll just define $R(\omega)=\omega$.
$\mathbb{E}[R]=\frac{1+2+3+4+5+6}{6}=7 / 2$ or 3.5 .
Does that mean we expect the die to come up 3.5? No, it will never come up 3.5. Maybe "expected value" was a bad choice of name.

In general, if R is a random variable with a uniform distribution over $[1, n], \mathbb{E}[R]=$ $\sum_{i=1}^{n} i \cdot \frac{1}{n}=\frac{1}{n} \sum_{i=1}^{n} i=\frac{1}{n} n(n+1) / 2=(n+1) / 2$.

Nonuniform distribution

A cherry tomato plant produces about 100 tomatoes a season. Plum tomato plant: 40. Heirloom tomato plant: 20.
60% of the plants in my garden are cherry tomato plants. 25% plum. 15% heirloom. What's the expected yield of a plant from my garden?
$.6 \cdot 100+.25 \cdot 40+.15 \cdot 20=73$ tomatoes: a weighted average.

One and die

Let R again be the random variable corresponding to a fair die.
$1+\mathbb{E}[R]=1+3.5=4.5$.
$\mathbb{E}[1+R]=\frac{2+3+4+5+6+7}{6}=\frac{27}{6}=\frac{9}{2}$ or 4.5 .
Sometimes the expectation of a function matches the function of the expectation.

One over die

Let R again be the random variable corresponding to a fair die.
$\frac{1}{\mathbb{E}[R]}=\frac{1}{3.5}=\frac{2}{7}$ (.29 ish).
$\mathbb{E}\left[\frac{1}{R}\right]=\frac{1+1 / 2+1 / 3+1 / 4+1 / 5+1 / 6}{6}=\frac{49}{120}$ (. 41 ish).
Sometimes the expectation of a function matches the function of the expectation. Sometimes not.

