Conditional Expectation (18.4.5)

Mean Time to Failure (18.4.6)

Optional: fixing the book

Conditional Expectation

Robert Y. Lewis

CS 0220 2024

April 15, 2024

Conditional Expectation (18.4.5) $_{\odot \odot}$

Mean Time to Failure (18.4.6)

Optional: fixing the book

Overview

- 1 Alternate Definition of Expectation (18.4.4)
- 2 Conditional Expectation (18.4.5)
- 3 Mean Time to Failure (18.4.6)
- 4 Optional: fixing the book

Conditional Expectation (18.4.5) $_{\circ\circ}$

Mean Time to Failure (18.4.6)

Optional: fixing the book

Expectation definition

Recall:

Definition: If *R* is a random variable defined on a sample space S, then the expectation of *R* is

$$\mathbb{E}[R] ::= \sum_{\omega \in S} R(\omega) \Pr[\omega].$$

_

Conditional Expectation (18.4.5) $_{\circ\circ}$

Mean Time to Failure (18.4.6)

Optional: fixing the book

Shortcut formula for expectation

Instead of summing over all outcomes, sometimes easier to group outcomes by the blocks defined by the random variable.

$$\mathbb{E}[R] = \sum_{x \in \operatorname{range}(R)} x \cdot \Pr[R = x].$$

Proof:
$$\mathbb{E}[R] = \sum_{\omega \in S} R(\omega) \Pr[\omega]$$
defn expt $= \sum_{x \in range(R)} \sum_{\omega \in [R=x]} R(\omega) \Pr[\omega]$ range is partition $= \sum_{x \in range(R)} \sum_{\omega \in [R=x]} x \Pr[\omega]$ defn R, ω $= \sum_{x \in range(R)} x \sum_{\omega \in [R=x]} \Pr[\omega]$ factor out x $= \sum_{x \in range(R)} x \Pr[R = x]$.defn event prob

Conditional Expectation (18.4.5) ●○ Mean Time to Failure (18.4.6)

Optional: fixing the book

Definition of conditional expectation

Definition: The conditional expectation of a random variable *R* given event *A* is:

$$\mathbb{E}[R|A] := \sum_{r \in \operatorname{range}(R)} r \cdot \Pr[R = r|A].$$

Example: *R* is the deck of cards example from before: value of card, 1 for ace, 10 for face.

$$\mathbb{E}[R|R < 10] \\ = \sum_{i=1}^{9} i \Pr[R = i|R < 10] \\ = \sum_{i=1}^{9} i \frac{\Pr[R = i \land R < 10]}{\Pr[R < 10]} \\ = \sum_{i=1}^{9} i \frac{\frac{1}{13}}{\frac{9}{13}} \\ = 1/9 \sum_{i=1}^{9} i \\ = 45/9 = 5.$$

Conditional Expectation (18.4.5) $_{\odot} \odot$

Mean Time to Failure (18.4.6)

Optional: fixing the book

The height of elephants

How tall are elephants on average? Don't know. Web search didn't help. Conditional expectations can!

Mean Time to Failure (18.4.6) ●○○ Optional: fixing the book

Memoryless crash time

A program crashes at the end of each hour of use with probability p. Let C be the random variable for the time until a crash occurs. What is $\mathbb{E}[C]$?

Let *A* be the event that the program crashes after the first hour and \overline{A} be the complementary event. Mean time to failure is

$$\mathbb{E}[C] = \mathbb{E}[C|A] \cdot \Pr[A] + \mathbb{E}[C|\overline{A}] \cdot \Pr[\overline{A}]$$

 $\mathbb{E}[C|A] = 1$ because A is the event that the program crashes after one hour.

 $\mathbb{E}[C|\overline{A}] = 1 + \mathbb{E}[C]$ because the program runs for an hour, then we're back in the original situation.

$$\begin{split} \mathbb{E}[C] &= 1 \cdot p + (1 + \mathbb{E}[C])(1 - p) \\ \mathbb{E}[C] &= p + 1 + \mathbb{E}[C] - p - p\mathbb{E}[C] \\ p\mathbb{E}[C] &= 1 \\ \mathbb{E}[C] &= 1/p \end{split}$$

Conditional Expectation (18.4.5) $_{\odot \odot}$

Mean Time to Failure (18.4.6) ○●○ Optional: fixing the book

Mean time to failure

General principle:

If a system independently fails at each time step with probability p, then the expected number of steps up to the first failure is 1/p.

Conditional Expectation (18.4.5)

Mean Time to Failure (18.4.6) ○○● Optional: fixing the book

More failures

I'm driving down a street with lots of intersections with traffic lights. Each light is (independently) red 50% of the time and green 50% of the time. How many intersections do I expect to drive through before I stop?

failure	red light
hour	intersection
р	1/2
1/p	2

- Coin flips until heads? 2
- Cards until face card? 13/3 = 4.3 ish
- Insertions into a mostly-empty hash table before collision?

Conditional Expectation (18.4.5) $_{\circ\circ}$

Mean Time to Failure (18.4.6)

Optional: fixing the book ●○○

Median

Not the same as mean or expected value. Intuitively, it's the "middle" of the set of values.

1, 3, **4**, 10, 1000

Useful sometimes for disregarding outlier values of a random variable. But expectation has better mathematical properties, so we'll focus on that.

Conditional Expectation (18.4.5)

Mean Time to Failure (18.4.6)

Optional: fixing the book $\circ \bullet \circ$

Median

Definition (from an earlier version of the textbook): The *median* of a random variable R is a value $x \in range(R)$ such that

1

$$\Pr[R \le x] \ge \frac{1}{2}$$
$$\Pr[R \ge x] \ge \frac{1}{2}.$$

and

Why is this wrong?

Conditional Expectation (18.4.5) $_{\circ\circ}$

Mean Time to Failure (18.4.6)

Optional: fixing the book $\circ \circ \bullet$

Fixing the book's definition

Can you think of a better way to define this in the context of probability spaces? When does the concept make sense?