Variance

Robert Y. Lewis

CS 02202024

April 22, 2024

Overview

1 Differing from the mean

2 Variance

3 Mean time to failure (again)

Beyond mean and median

The expectation (mean) of a random variable tells us something about how values of that variable are distributed over our sample space.

The median tells us something similar, but with a different edge to it.
One (or two) measures aren't enough to fully summarize a data set. Compare median and mean for:

$$
\begin{gathered}
10,10,10,10,10,10,10 \\
0,1,2,10,18,19,20
\end{gathered}
$$

Markov's inequality

Markov's inequality gives a generally coarse estimate of the probability that a random variable takes a value much larger than its mean.

Theorem. If R is a nonnegative random variable, then for all $x>0$,

$$
\operatorname{Pr}[R \geq x] \leq \frac{\mathbb{E}[R]}{x}
$$

Markov's inequality

Theorem. If R is a nonnegative random variable, then for all $x>0$,

$$
\operatorname{Pr}[R \geq x] \leq \frac{\mathbb{E}[R]}{x}
$$

Proof.

$$
\begin{aligned}
\mathbb{E}[R] & =\sum_{y \in \operatorname{range}(R)} y \cdot \operatorname{Pr}[R=y] \\
& \geq \sum_{y \in \operatorname{range}(R), y \geq x} y \cdot \operatorname{Pr}[R=y] \\
& \geq \sum_{y \in \operatorname{range}(R), y \geq x} x \cdot \operatorname{Pr}[R=y]=x \sum_{y \in \operatorname{range}(R), y \geq x} \operatorname{Pr}[R=y] \\
& =x \operatorname{Pr}[R \geq x]
\end{aligned}
$$

Markov's inequality, rephrased

Corollary. If R is a nonnegative random variable, then for all $c \geq 1$,

$$
\operatorname{Pr}[R \geq c \mathbb{E}[R]] \leq \frac{1}{c}
$$

"No more than $1 / c$ of the population can be c-times outliers."
No more than 10% of the population earns more than 10x the average income (assuming incomes are nonnegative).

Changing variables

Fix some random variable $R .|R|^{z}$ is also a nonnegative random variable. And $|R|^{Z} \geq x^{z} \leftrightarrow|R| \geq x$.

$$
\begin{aligned}
\operatorname{Pr}[|R| \geq x] & =\operatorname{Pr}\left[|R|^{z} \geq x^{z}\right] \\
& \leq \frac{\mathbb{E}\left[|R|^{z}\right]}{x^{z}}
\end{aligned}
$$

$R-\mathbb{E}[R]$ is also a random variable. Plug this in:

$$
\operatorname{Pr}[|R-\mathbb{E}[R]| \geq x] \leq \frac{\mathbb{E}\left[|R-\mathbb{E}[R]|^{z}\right]}{x^{z}}
$$

(Hold onto this one a sec.)

Defining variance

The variance of a random variable R is defined to be

$$
\operatorname{Var}[R]=\mathbb{E}\left[(R-\mathbb{E}[R])^{2}\right]
$$

Unpacking: at each outcome, measure the distance between R and its mean. Square this. Average this square over all outcomes.

If R is always close to its mean: variance is small. If R wanders away from its average a lot: variance is high.

Chebyshev's Inequality

Rephrasing our calculation from before:

$$
\operatorname{Pr}[|R-\mathbb{E}[R]| \geq x] \leq \frac{\operatorname{Var}[R]}{x^{2}}
$$

Variance lets us bound the probability that a variable is far from its mean.

Gambling example

Bet 1: Win $\$ 2$ with probability $2 / 3$, lose $\$ 1$ with probability $1 / 3$.
Bet 2: Win $\$ 1002$ with probability $2 / 3$, lose $\$ 2001$ with probability $1 / 3$.
$\mathbb{E}\left[B_{1}\right]=2 \cdot 2 / 3-1 \cdot 1 / 3=1$
$\mathbb{E}\left[B_{2}\right]=1002 \cdot 2 / 3-2001 \cdot 1 / 3=1$
$\operatorname{Var}\left[B_{1}\right]=2$
$\operatorname{Var}\left[B_{2}\right]=2,004,002$
(standard deviation = sq rt of variance sometimes more intuitive)

Computing variance

Theorem. $\operatorname{Var}[R]=\mathbb{E}\left[R^{2}\right]-(\mathbb{E}[R])^{2}$.
Proof. Algebra and linearity (see the book!).
Particularly handy for indicator (Bernoulli) variables taking values in $\{0,1\}$:
Corollary. If B is a Bernoulli random variable with $\operatorname{Pr}[B=1]=p$, then
$\operatorname{Var}[B]=p-p^{2}=p(1-p)$.

Mean time to failure

Something disappointing about our mean time to failure analysis: no bound/restriction on the "long tail" of successes.

Reminder: if failure occurs independently with probability p, the expected number of successes before failure is $1 / p$.

MTtF variance

Let C be the random variable measuring the number of successes before failure.

$$
\begin{aligned}
\operatorname{Var}[C] & =\mathbb{E}\left[C^{2}\right]-(\mathbb{E}[C])^{2} \\
& =\mathbb{E}\left[C^{2}\right]-\frac{1}{p^{2}}
\end{aligned}
$$

Need to get a grasp on $\mathbb{E}\left[C^{2}\right]$. Reason about conditional expectations again:

$$
\begin{aligned}
\mathbb{E}\left[C^{2}\right] & =\mathbb{E}\left[C^{2} \mid \text { failure first }\right] \cdot \operatorname{Pr}[\text { failure first }]+\mathbb{E}\left[C^{2} \mid \text { success first }\right] \cdot \operatorname{Pr}[\text { success first }] \\
& =1^{2} \cdot p+\left(\mathbb{E}\left[(1+C)^{2}\right]\right) \cdot(1-p)
\end{aligned}
$$

MTtF variance continued

$$
\begin{aligned}
\mathbb{E}\left[C^{2}\right] & =1^{2} \cdot p+\left(\mathbb{E}\left[(1+C)^{2}\right]\right) \cdot(1-p) \\
& =p+(1-p)\left(\mathbb{E}\left[C^{2}+2 C+1\right]\right) \\
& =p+(1-p)\left(\mathbb{E}\left[C^{2}\right]+2 \mathbb{E}[C]+1\right) \\
& =p+(1-p) \mathbb{E}\left[C^{2}\right]+(1-p)\left(\frac{2}{p}+1\right)
\end{aligned}
$$

Solving for $\mathbb{E}\left[C^{2}\right]$ gives

$$
\mathbb{E}\left[C^{2}\right]=\frac{2-p}{p^{2}}
$$

so

$$
\operatorname{Var}[C]=\frac{2-p}{p^{2}}-\frac{1}{p^{2}}=\frac{1-p}{p^{2}} .
$$

