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Beyond mean and median

The expectation (mean) of a random variable tells us something about how values of
that variable are distributed over our sample space.

The median tells us something similar, but with a different edge to it.

One (or two) measures aren’t enough to fully summarize a data set. Compare median
and mean for:

10, 10, 10, 10, 10, 10, 10

0, 1, 2, 10, 18, 19, 20
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Markov’s inequality

Markov’s inequality gives a generally coarse estimate of the probability that a random
variable takes a value much larger than its mean.

Theorem. If R is a nonnegative random variable, then for all x > 0,

Pr[R ≥ x] ≤ E[R]
x

.
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Markov’s inequality
Theorem. If R is a nonnegative random variable, then for all x > 0,

Pr[R ≥ x] ≤ E[R]
x

.

Proof.

E[R] =
∑

y∈range(R)

y · Pr[R = y]

≥
∑

y∈range(R),y≥x

y · Pr[R = y]

≥
∑

y∈range(R),y≥x

x · Pr[R = y] = x
∑

y∈range(R),y≥x

Pr[R = y]

= x Pr[R ≥ x]
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Markov’s inequality, rephrased

Corollary. If R is a nonnegative random variable, then for all c ≥ 1,

Pr [R ≥ cE [R]] ≤ 1
c
.

“No more than 1/c of the population can be c-times outliers.”

No more than 10% of the population earns more than 10x the average income
(assuming incomes are nonnegative).
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Changing variables

Fix some random variable R. |R|z is also a nonnegative random variable. And
|R|z ≥ xz ↔ |R| ≥ x.

Pr[|R| ≥ x] = Pr[|R|z ≥ xz]

≤ E[|R|z]
xz

R− E[R] is also a random variable. Plug this in:

Pr[|R− E[R]| ≥ x] ≤ E[|R− E[R]|z]
xz

(Hold onto this one a sec.)
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Defining variance

The variance of a random variable R is defined to be

Var[R] = E
[
(R− E [R])2

]
.

Unpacking: at each outcome, measure the distance between R and its mean. Square
this. Average this square over all outcomes.

If R is always close to its mean: variance is small. If Rwanders away from its average a
lot: variance is high.
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Chebyshev’s Inequality

Rephrasing our calculation from before:

Pr[|R− E[R]| ≥ x] ≤ Var[R]
x2

Variance lets us bound the probability that a variable is far from its mean.
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Gambling example

Bet 1: Win $2 with probability 2/3, lose $1 with probability 1/3.
Bet 2: Win $1002 with probability 2/3, lose $2001 with probability 1/3.

E[B1] = 2 · 2/3 − 1 · 1/3 = 1
E[B2] = 1002 · 2/3 − 2001 · 1/3 = 1

Var[B1] = 2
Var[B2] = 2,004,002
(standard deviation = sq rt of variance sometimes more intuitive)
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Computing variance

Theorem. Var[R] = E[R2]− (E[R])2.
Proof. Algebra and linearity (see the book!).

Particularly handy for indicator (Bernoulli) variables taking values in {0, 1}:

Corollary. If B is a Bernoulli random variable with Pr[B = 1] = p, then
Var[B] = p− p2 = p(1 − p).
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Mean time to failure

Something disappointing about our mean time to failure analysis: no bound/restriction
on the “long tail” of successes.

Reminder: if failure occurs independently with probability p, the expected number of
successes before failure is 1/p.
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MTtF variance

Let C be the random variable measuring the number of successes before failure.

Var[C] = E[C2]− (E[C])2

= E[C2]− 1
p2

Need to get a grasp on E[C2]. Reason about conditional expectations again:

E[C2] = E[C2|failure first] · Pr[failure first] + E[C2|success first] · Pr[success first]
= 12 · p+ (E[(1 + C)2]) · (1 − p)
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MTtF variance continued

E[C2] = 12 · p+ (E[(1 + C)2]) · (1 − p)
= p+ (1 − p)(E[C2 + 2C+ 1])
= p+ (1 − p)(E[C2] + 2E[C] + 1)

= p+ (1 − p)E[C2] + (1 − p)(
2
p
+ 1)

Solving for E[C2] gives

E[C2] =
2 − p
p2

so

Var[C] =
2 − p
p2 − 1

p2 =
1 − p
p2 .
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