Proofs in Propositional Logic

Robert Y. Lewis

CS 02202024

January 31, 2024

Overview

1 Proof Rules

2 Introduction Rules

3 Elimination Rules

4 Negation rules

Proof vs Truth

For today, we're going to think about propositional formulas, like $p \wedge q \rightarrow r$.
We saw a way to evaluate when these kinds of formulas are true: truth tables.
Today, we'll see a way to prove these kinds of formulas. Why the distinction?

Goals and Hypotheses

Suppose we have a proposition G that we want to prove.
The structure of G determines what we need to do to prove it.
Suppose we know a proposition H.
The structure of H determines what we can do with this fact.
During a proof, we might have multiple things that we want to prove (goals). Associated to each goal, there is a list of things we know (a list of hypotheses, making up a context).

The Proof Game

Start: one goal, zero hypotheses.
Aim: all goals completed.
Moves: proof rules, to change proof state.
An example from last week: "there is a perfect square whose final digit is 4." Proof rule: to prove an existential, provide a witness: 8^{2}. Goal becomes, "the final digit of 8^{2} is 4 ." (True by computation.)

Propositional Logic

Let's make this more precise.
We introduced the language of propositional logic: formulas built out of atoms and connectives $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$.

What are the proof rules associated with these symbols?
Two categories of rules. Introduction rules say how to prove a goal of a certain form. Elimination rules say how to use a hypothesis of a certain form.

"And" Introduction

If your goal is to prove $P \wedge Q$: first prove P, then prove Q. (Turns one goal into two smaller goals.)

"Or" Introduction

If your goal is to prove $P \vee Q$, there are two rules you can follow:
■ Prove P. ("left")
■ Prove Q. ("right")
Both rules turn one goal into one smaller goal.
An example: prove $(1+1=2 \vee 1+1=3) \wedge(2 \cdot 2=5 \vee 2 \cdot 2=4)$.

Implication Introduction

To prove $P \rightarrow Q$: assume P (a new hypothesis), and show Q (a new goal).
Goal: if x is even, then x^{2} is even. Suppose x is even. We use this fact to show that x^{2} must be even, because

To show $P \leftrightarrow Q$: show $P \rightarrow Q$ and $Q \rightarrow P$ (two goals).

Atoms

If you have a hypothesis P in your context, you can close a goal of P. ("By assumption")
Goal: if x is even, then x is even. Suppose x is even. Our goal is now to show that x is even. This follows by assumption.

In Lean

Introduction rules in Lean:
■ and intro: split_goal
■ or intro: left, right

- implication intro: assume h

■ iff intro: split_goal

"And" Elimination

If you know $P \wedge Q$, you know two things:

- P
- Q

Yes, this sounds silly to say out loud. We usually don't think about this.
In terms of proof state: turns one hypothesis into two smaller hypotheses.

"Or" Elimination

This one's more interesting!
If you know $P \vee Q$, and your goal is G, you can reason by cases. That is: if you show $P \rightarrow G$, and you show $Q \rightarrow G$, then you have shown G.

In terms of proof state: creates two goals, each with a new hypothesis.

Implication Elimination: modus ponens

If x is prime, then $x \geq 2$. x is prime. Therefore, $x \geq 2$.
General pattern: if you know $P \rightarrow Q$ and you know P, then you know Q.
Adds a hypothesis.
Alternate phrasing: if your goal is to show Q, and you know $P \rightarrow Q$, it suffices to show P.
Changes the goal.
(Iff elimination is easy: if you know $P \leftrightarrow Q$, then you know $P \rightarrow Q$ and $Q \rightarrow P$.)

Getting comfortable with contradiction

We live in a world where things make sense. (...)
In our sensible world, some statements are true and some are false. But none are true and false.
So if we can prove both a proposition and its negation, we're living in nonsense land. Anything follows.

Negation elimination and introduction

Elimination proof rule: if you know P and you know $\neg P$, you can prove anything (i.e. close any goal).

Introduction proof rule: if your goal is to prove $\neg P$, you can assume P, and show "false". Proof by contradiction!

Example proof by contradiction

Proposition: $\sqrt{2}$ is not rational.
We prove that $\sqrt{2}$ is not rational by contradiction. Suppose $\sqrt{2}$ is rational. By the definition of "rational", that means $\sqrt{2}=p / q$ where p and q are integers. Furthermore, we can choose p and q to be in lowest terms so they have no factors in common. Squaring both sides, we get $2=p^{2} / q^{2}$ or $2 q^{2}=p^{2}$. Since q^{2} is an integer, and p^{2} is an integer times $2, p^{2}$ is even. By a similar argument to the one for odd squares (from a few lectures ago), that means p must be even. If p is even, p^{2} must be divisible by 4 . Since $2 q^{2}$ is divisible by $4, q^{2}$ must be divisible by 2 (the other factor of two must be there). That means both p and q are even. But, then p / q is not in lowest terms. Since we already asserted that p / q is in lowest terms when p and q were chosen, we've reached a contradiction. Therefore, $\sqrt{2}$ must be irrational.

