Elimination Rules

Negation rules

Validity and satisfiability

Propositional Proofs and Validity

Robert Y. Lewis

CS 0220 2024

February 2, 2024

Elimination Rules

Negation rules

Validity and satisfiability

Overview

1 Proof Rules

- 2 Elimination Rules
- 3 Negation rules
- 4 Validity and satisfiability
 - Validity (3.3.2)
 - Satisfiability (3.3.2)

Elimination Rules

Negation rules

Validity and satisfiability

The proof game, revisited

Remember our setup from last class:

At any point in a proof, we have some goals and their corresponding contexts.

- A goal is a proposition that we want to prove.
- A context is a list of *hypotheses*, propositions that we know.

We complete a proof by repeatedly transforming these goals and hypotheses by applying *proof rules*, which are individual reasoning steps.

Elimination Rules

Negation rules

Validity and satisfiability

Introduction rules, revisited

Introduction rules were valid based on the shape of the goal.

- **To prove** $A \wedge B$, it suffices to prove A, then to prove B.
- To prove $A \lor B$, it suffices to prove A.
- To prove $A \lor B$, it suffices to prove B.

...

These proof rules update the *goal* without changing the *context*. Contrast:

• To prove $A \rightarrow B$, it suffices to prove B, using the extra hypothesis A.

Elimination Rules

Negation rules

Validity and satisfiability

"And" Elimination

If you know $P \land Q$, you know two things:

■ P ■ Q

Yes, this sounds silly to say out loud. We usually don't think about this.

In terms of proof state: turns one hypothesis into two smaller hypotheses.

Negation rules

Validity and satisfiability

"Or" Elimination

This one's more interesting!

If you know $P \lor Q$, and your goal is *G*, you can *reason by cases*. That is: if you show $P \to G$, and you show $Q \to G$, then you have shown *G*.

In terms of proof state: creates two goals, each with a new hypothesis.

Elimination Rules

Negation rules

Validity and satisfiability

Implication Elimination: modus ponens

If x is prime, then $x \ge 2$. x is prime. Therefore, $x \ge 2$.

General pattern: if you know $P \rightarrow Q$ and you know P, then you know Q. Adds a hypothesis.

Alternate phrasing: if your goal is to show Q, and you know $P \rightarrow Q$, it suffices to show P. Changes the goal.

(Iff elimination is easy: if you know $P \leftrightarrow Q$, then you know $P \rightarrow Q$ and $Q \rightarrow P$.)

Elimination Rules

Negation rules

Validity and satisfiability

In Lean

Introduction rules in Lean:

- \blacksquare and elim: eliminate h with h1 h2
- orelim:eliminate h with h1 h2
- implication elim: have hb := hab ha
- iffelim:eliminate h with h1 h2

Elimination Rules

Negation rules ●000 Validity and satisfiability

Getting comfortable with contradiction

We live in a world where things make sense. (...)

In our sensible world, some statements are true and some are false. But none are true *and* false.

So if we can prove both a proposition and its negation, we're living in nonsense land. Anything follows. Elimination Rules

Negation rules

Validity and satisfiability

Negation elimination and introduction

Negation elimination: if you know P and you know $\neg P$, you can prove anything (i.e. close any goal).

Negation introduction: if your goal is to prove $\neg P$, you can assume P, and show "false". "Proof by contradiction!"

Elimination Rules

Negation rules 00●0 Validity and satisfiability

Example proof by contradiction

Proposition: $\sqrt{2}$ is not rational.

We prove that $\sqrt{2}$ is not rational by contradiction. Suppose $\sqrt{2}$ is rational. By the definition of "rational", that means $\sqrt{2} = p/q$ where p and q are integers. Furthermore, we can choose p and q to be in lowest terms so they have no factors in common. Squaring both sides, we get $2 = p^2/q^2$ or $2q^2 = p^2$. Since q^2 is an integer, and p^2 is an integer times 2, p^2 is even. By a similar argument to the one for odd squares (from a few lectures ago), that means p must be even. If p is even, p^2 must be divisible by 4. Since $2q^2$ is divisible by 4, q^2 must be divisible by 2 (the other factor of two must be there). That means both p and q are even. But, then p/q is not in lowest terms. Since we already asserted that p/q is in lowest terms when p and q were chosen, we've reached a contradiction. Therefore, $\sqrt{2}$ must be irrational.

Elimination Rules

Negation rules 000● Validity and satisfiability

A subtlely different proof by contradiction

From the last slide: if your goal is to prove $\neg P$, you can assume *P*, and show "false".

Compare to:

Proof by contradiction: if your goal is to prove *P*, you can assume $\neg P$, and show "false".

Elimination Rules

Negation rules

Validity and satisfiability

Validity (3.3.2)

Back to truth for a moment!

Elimination Rules

Negation rules

Validity and satisfiability

Validity (3.3.2)

DeMorgan's Law

These two statements are equivalent:

$$\blacksquare \neg (P \land Q)$$

$$\blacksquare \neg P \lor \neg Q$$

They are equivalent because they have exactly the same truth table. (Or, because we can *prove* $\neg (P \land Q) \leftrightarrow (\neg P \lor \neg Q)$.) You can think of this as negation "distributing" over AND, negating the inputs and switching the AND to OR.

Elimination Rules

Negation rules

Validity and satisfiability

Validity (3.3.2)

Equivalence and validity: Definitions

A formula can be thought of as a function mapping variable assignments to truth values. Each row of the truth table shows one input and its corresponding output.

Definition: Two formulas over the same set of variables are *equivalent* if they evaluate to the same truth value under every variable assignment.

Definition: A formula is *valid* if it is always true regardless of variable assignment.

Example: $P \lor \neg P$

Ρ	$\neg P$	$P \lor \neg P$
F	Т	Т
T	F	Т

Elimination Rules

Negation rules

Validity and satisfiability

Validity (3.3.2)

_

Equivalence and validity

A formula is valid iff it is equivalent to **T**.

Two formulas α and β are equivalent iff $\alpha \leftrightarrow \beta$ is valid.

Elimination Rules

Negation rules

Validity and satisfiability

Validity (3.3.2)

_

Equivalence and validity

A formula is valid iff it is equivalent to **T**.

Two formulas α and β are equivalent iff $\alpha \leftrightarrow \beta$ is valid.

Elimination Rules

Negation rules

Validity and satisfiability

Validity (3.3.2)

_

Equivalence and validity

A formula is valid iff it is equivalent to **T**.

Two formulas α and β are equivalent iff $\alpha \leftrightarrow \beta$ is valid.

Ρ	$\neg P$	$\neg \neg P$	$P \leftrightarrow \neg \neg P$
F	Т	F	
Т	F	т	

Elimination Rules

Negation rules

Validity and satisfiability

Validity (3.3.2)

_

Equivalence and validity

A formula is *valid* iff it is equivalent to **T**.

Two formulas α and β are equivalent iff $\alpha \leftrightarrow \beta$ is valid.

Ρ	$\neg P$	$\neg \neg P$	$P\leftrightarrow \neg \neg P$
F	Т	F	Т
T	F	Т	Т

Elimination Rules

Negation rules

Validity and satisfiability

Satisfiability (3.3.2)

Satisfiability

Definition: A formula is *satisfiable* if at least one assignment evaluates to true.

A formula is satisfiable iff its negation is not valid. (DeMorgan's law in another form.) Validity is kind of like "∀".

Satisfiability is kind of like " \exists ".

Determining whether a formula is satisfiable, efficiently, is a core problem in computer science. Examples: Solving puzzles, finding successful plans, arranging items in space, factoring, finding paths in graphs...

Elimination Rules

Negation rules

Validity and satisfiability

Satisfiability (3.3.2)

-

Checking satisfiability and validity

Easy if few variables. Just write out the truth table!

Ρ	Q	$\neg Q$	$\neg P$	$Q \lor \neg P$	$ eg Q \land (Q \lor \neg P)$
F	F	Т	Т	Т	Т
F	Т	F	Т	Т	F
т	F	Т	F	F	F
т	Т	F	F	Т	F

If all rows are *T*: *valid*. If at least one row is *T*: *satisfiable*.

Blows up as the number of variables gets large. Need another way.

Theorem: A propositional formula is valid if and only if it can be proved using only the proof rules we have introduced here (including proof by contradiction).