Modular Arithmetic, Multiplicative Inverse

Robert Y. Lewis

CS 0220 2022

March 4, 2022
Overview

1. Pulverizer (8.2.2)

2. Fundamental Theorem of Arithmetic (8.4)

3. Modular Arithmetic (8.5)

4. Arithmetic with a Prime Modulus (8.6)
 - Multiplicative Inverses (8.6.1)
GCD Linear Combination Theorem

A refresher from the end of last class:

Theorem: The greatest common divisor of a and b is a linear combination of a and b. That is, $\gcd(a, b) = s \cdot a + t \cdot b$ for some integers s and t.
Computing the linear combination

We can use this theorem as an algorithm to find the linear combination of a and b that produces their GCD. Returns (s, t, g) where g is the GCD of the input.

def gcdcombo(a, b):
 if $a = 0$: return $(0, 1, b)$
 else:
 $(s, t, g) = \text{gcdcombo}(\text{rem}(b, a), a)$
 return $(t - s \cdot \text{qcnt}(b, a), s, g)$

- gcdcombo$(0, 15) = (0, 1, 15)$
- gcdcombo$(10, 15) = (-1, 1, 5)$
- gcdcombo$(24, 64) = (3, -1, 8)$
Computing By Hand

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>q</th>
<th>s</th>
<th>t</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>64</td>
<td>2</td>
<td>3</td>
<td>−1</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>24</td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

Do the rems going down, then the qcnts going up. Note that, at every level: \(sa + tb = g \) (sanity check!).
Pulverizing

Corollary: An integer is a linear combination of \(a \) and \(b \) iff it is a multiple of \(\gcd(a, b) \).

Proof (for reference):
Let \(g = \gcd(a, b) \). We showed \(g = sa + tb \) for some \(s \) and \(t \). Any multiple of \(g \) is a linear combination of \(a \) and \(b \): \(kg = k(sa + tb) = (ks)a + (kt)b \).

We know \(a = k_1g \) and \(b = k_2g \) because \(g \) is a common divisor of \(a \) and \(b \). Any linear combination of \(a \) and \(b \) is a multiple of \(g \): \(s'a + t'b = s'(k_1g) + t'(k_2g) = (s'k_1 + t'k_2)g \).

Mixing \(a \) and \(b \) in different combinations, we can only make multiples of \(g \).

Note: The combinations are not unique: \(sa + tb = (s - b)a + (t + a)b \).
Fundamental Theorem of Arithmetic

Theorem: Every integer greater than 1 is a product of a unique non-increasing sequence of primes.

Lemma: If p is a prime and $p \mid ab$, then $p \mid a$ or $p \mid b$.

Proof of Lemma: One case is if $\gcd(a, p) = p$. Then, the claim holds, because a is a multiple of p.

Otherwise, $\gcd(a, p) \neq p$. In this case, $\gcd(a, p)$ must be 1, since 1 and p are the only positive divisors of p. Since $\gcd(a, p)$ is a linear combination of a and p, we have $1 = sa + tp$ for some s, t. Then, $b = s(ab) + (tb)p$; that is, b is a linear combination of ab and p. Since p divides both ab and p, it also divides their linear combination, b. QED.
Lemma: Let p be a prime. If $p | a_1 a_2 \cdots a_n$, then p divides some a_i.

Proof: Every positive integer can be expressed as a product of primes. (Challenge: strong induction!) We need to show this expression is unique. We proceed by contradiction: Assume there exists positive integers that can be written as products of primes in more than one way. Take the smallest such integer n and let $n = p_1 p_2 \cdots p_j = q_1 q_2 \cdots q_k$ be the two decompositions. Arrange them in non-increasing order and assume without loss of generality that $p_1 \leq q_1$. If $p_1 = q_1$, the remaining part of the product is smaller than n and different, which is a contradiction (n was the smallest).

Note that all the p_is are less than q_1. But $q_1 | n$ and $n = p_1 p_2 \cdots p_j$, so q_1 divides one of the p_is, which contradicts the fact that q_1 is bigger than all them. QED.
Congruence definition

Definition: a is congruent to b modulo n iff $\text{rem}(b, n) = \text{rem}(a, n)$. Equivalently, $n|(a - b)$.

We write $a \equiv b \pmod{n}$.

$29 \equiv 15 \pmod{7}$ because $7|(29 - 15)$, namely 14. Both have a remainder of 1 when divided by 7.

Equivalence relation—partitions the integers.
Transitivity, reflexivity, symmetry.
Basic modular algebra

In regular algebra,
\[a = b \]
\[a + c = b + c. \]

Can we do the same is congruence-land? \[a \equiv b \pmod{n} \]
\[a + c \equiv b + c \pmod{n}. \]

Yes!
\[a \equiv b \pmod{n} \iff n | (a - b) \iff \exists k, kn = a - b \iff \exists k, kn = a - b + (c - c) \iff \exists k, kn = (a + c) - (b + c) \iff n | ((a + c) - (b + c)) \iff a + c \equiv b + c \pmod{n}. \]

Multiplication is repeated addition, so we can also multiply both sides by a constant. By transitivity, we can always add or multiply each side by values that are congruent! “Clock arithmetic”.
Example

\[2x + 17 \equiv x + 31 \pmod{12}\]

\[2x \equiv x + 14 \pmod{12}\] add \(-17\) to both sides

\[2x \equiv x + 2 \pmod{12}\] add 0 to left and \(-12\) to right

\[x \equiv 2 \pmod{12}\] add \(-x\) to both sides

Double check. \(4 + 17 = 21\ vs.\ 33\). Difference is 12, check!

\[3x + 4 \equiv 27 \pmod{11}\]

\[3x \equiv 23 \pmod{11}\] add \(-4\) to both sides

Kind of stuck because we don’t (yet) have a “divide both sides by 3” rule.
So, what about division?

If \(a \equiv b \pmod{n} \), can we divide both sides by \(c \)?

\[
7 \equiv 28 \pmod{3} \\
1 \equiv 4 \pmod{3} \quad \text{divide by 7}
\]

So, maybe? At least if the answers are integers?

Is division even meaningful more generally?
Back to basics

Definition: The *multiplicative inverse* of a number x is a number x^{-1} such that:

$$x \cdot x^{-1} = 1.$$

Division by x is really multiplication by x^{-1}.

Over the reals, what values have inverses? Everybody but zero.

Over the integers, what values have inverses? Only 1 and -1.

Over the integers mod n, what values have inverses?
Multiplicative Inverses (8.6.1)

Example, mod 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

What specific values have inverses? 1, 3, 7, 9.

What specific values do not have inverses? 0, 2, 4, 5, 6, 8.

General rule? \(a \) has an inverse (mod \(n \)) iff \(\gcd(a, n) = 1 \).
Back to solving

\[3x + 4 \equiv 27 \pmod{11}\]
\[3x \equiv 23 \pmod{11}\] add -4 to both sides

Want to multiply both sides by $3^{-1} = 4$, since $3 \times 4 \equiv 1 \pmod{11}$.

\[3x \equiv 23 \pmod{11}\]
\[4 \times 3x \equiv 4 \times 23 \pmod{11}\] multiply both sides by 4
\[12x \equiv 92 \pmod{11}\] simplify
\[x \equiv 4 \pmod{11}\] congruence

Double check: 16 vs. 5, 11 divides the difference!