Multiplicative Inverse, Fermat’s little Theorem

Robert Y. Lewis

CS 0220 2022

March 7, 2022
Overview

1. Multiplicative Inverses (8.6.1)
2. Cancellation (8.6.2)
3. Fermat’s Little Theorem (8.6.3)
Definition: The multiplicative inverse of a number x is a number x^{-1} such that:

$$x \cdot x^{-1} = 1.$$

Division by x is really multiplication by x^{-1}.

Over the reals, what values have inverses? Everybody but zero.

Over the integers, what values have inverses? Only 1 and -1.

Over the integers mod n, what values have inverses?
Example, mod 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

What specific values have inverses? 1, 3, 7, 9.

What specific values do *not* have inverses? 0, 2, 4, 5, 6, 8.

General rule? \(a \) has an inverse (mod \(n \)) if \(\gcd(a, n) = 1 \).
Back to solving

\[3x + 4 \equiv 27 \pmod{11} \]
\[3x \equiv 23 \pmod{11} \quad \text{add } -4 \text{ to both sides} \]

Want to multiply both sides by \(3^{-1} = 4\), since \(3 \times 4 \equiv 1 \pmod{11}\).

\[3x \equiv 23 \pmod{11} \]
\[4 \times 3x \equiv 4 \times 23 \pmod{11} \quad \text{multiply both sides by } 4 \]
\[12x \equiv 92 \pmod{11} \quad \text{simplify} \]
\[x \equiv 4 \pmod{11} \quad \text{congruence} \]

Double check: 16 vs. 5, 11 divides the difference!
Inverse mod prime

General rule for existence of multiplicative inverses? Perhaps a has an inverse iff $\gcd(a, n) = 1$?
If this rule holds, all values (except zero!) have inverses mod a prime.

Lemma: If p is prime and k is not a multiple of p, then k has a multiplicative inverse modulo p.

Proof: Since p is prime and k is not a multiple of p, $\gcd(p, k) = 1$. Therefore, there are s and t such that $1 = sp + tk$. So, mod p, that’s $1 \equiv tk$, or $t \equiv k^{-1} \mod p$. QED.

Example: What’s the multiplicative inverse of 3 (mod 11)?
$\gcd\text{combo}(3, 11) = (4, -1, 1)$
So? 4 works. Because $1 = 4 \times 3 - 1 \cdot 11$, so, mod 11, that’s $1 = 4 \times 3$.
Back to dividing both sides

Earlier, we saw:

\[
\begin{align*}
7 &\equiv 28 \pmod{3} \\
1 &\equiv 4 \pmod{3} \text{ divide by 7}
\end{align*}
\]

Doesn’t actually work, in general:

\[
\begin{align*}
12 &\equiv 6 \pmod{3} \\
4 &\not\equiv 2 \pmod{3} \text{ divide by 3}
\end{align*}
\]

Why? Because we’re really talking about multiplying both sides by \(0^{-1}\), which doesn’t exist.

Apart from dividing by 0, we can cancel.
Cancellation proof

If we have

\[ak \equiv bk \pmod{p} \]

and \(p \) is prime and \(k \not\equiv 0 \pmod{p} \), then \(k^{-1} \pmod{p} \) exists. Multiply both sides by \(k^{-1} \) and congruence is maintained.
Never need to multiply big numbers

When doing multiplication mod n, we can always mod n the numbers first.

Example:
7415 × 2993 mod 3
= 22193095 mod 3
= 1

OR:
(7415 mod 3) × (2993 mod 3) mod 3
(2 × 2) mod 3
= 1.
Proof

\[ab \mod n = (a \mod n)(b \mod n) \mod n. \]

\[
\begin{align*}
 a &= q_1n + r_1 \\
 b &= q_2n + r_2 \\
 ab &= (q_1n + r_1)(q_2n + r_2) \\
 ab &= (q_1q_2n + q_1r_2 + q_2r_1)n + r_1r_2
\end{align*}
\]
Permuting

Corollary: Suppose \(p \) is prime and \(k \) is not a multiple of \(p \). Then, the sequence of remainders on division by \(p \) of the sequence:

\[
1 \cdot k, 2 \cdot k, \ldots, (p - 1) \cdot k
\]

is a permutation of the sequence:

\[
1, 2, \ldots, (p - 1).
\]

Example, \(k = 3, p = 11 \):

<table>
<thead>
<tr>
<th>(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\times k)</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>(\text{mod} p)</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>
Permutation proof

Proof: The sequence of remainders contains $p - 1$ numbers. Since $i \times k$ is not divisible by p (neither contains a factor of p) for $i = 1, \ldots, p - 1$, all these remainders are in $[1, p)$ by the definition of remainder.

Claim: if $i \cdot k \equiv j \cdot k \pmod{p}$, then $i = j$. (Cancel k; since $1 \leq i < p$, $i \pmod{p} = i$, same for j.)

So, $i - 1$ distinct values between 1 and $i - 1$: it’s a permutation.

It’s a magic shuffle function. Useful for randomization and sending secret messages!
Fermat’s little theorem

Theorem: Suppose p is prime and k is not a multiple of p. Then:

$$k^{p-1} \equiv 1 \pmod{p}.$$

Proof:

\[
\begin{align*}
(p - 1)! & \equiv 1 \cdot 2 \cdot \cdots \cdot (p - 1) & \text{Defn. of factorial} \\
& = \text{rem}(k, p) \cdot \text{rem}(2k, p) \cdots \text{rem}((p - 1)k, p) & \text{Permutation lemma} \\
& \equiv k \cdot 2k \cdots (p - 1)k \pmod{p} & \text{Congruence of mult.} \\
& \equiv (p - 1)!k^{p-1} \pmod{p} & \text{algebra}
\end{align*}
\]

Note that $(p - 1)!$ is not a multiple of p because none of $1, 2, \ldots, (p - 1)$ contain a factor of p. So, by the Cancellation lemma, we can cancel $(p - 1)!$ from the top and bottom, proving the claim. QED
Inverses from Fermat’s little theorem

Since $k^{p-1} \equiv 1 \pmod{p}$ and $k^{p-1} = k \cdot k^{p-2}$, that tells us that k^{p-2} is the multiplicative inverse for k.

We can compute $k^{p-2} \pmod{p}$ efficiently using a technique called exponentiation by repeated squaring.

Running time is $2 \log p$, just like “gcdcombo”.
Exponentiation by Repeated Squaring Idea

Can always compute a^k by $k - 1$ multiplications of a.

If k is even, can compute it with $k/2 - 1$ multiplications of a to get $a^{k/2}$. Then, $a^k = (a^{k/2})^2$. So, one more multiplication and we’re there.

If k is odd, similar trick to get $a^{(k-1)/2}$, then square, then multiply one more a.

Repeating this idea, the number of multiplications is on the order of $2 \log k$.
Exponentiation by Repeated Squaring

```python
def repsq(a,k):
    if k == 0: return(1)
    if k % 2 == 0:
        sqroot = repsq(a,k/2)
        return(sqroot*sqroot)
    sqrootdiva = repsq(a,(k-1)/2)
    return(sqrootdiva*sqrootdiva*a)
```
Exponentiation by Repeated Squaring Mod Style

def repsqmodn(a, k, n):
 a := a % n
 if k == 0: return(1)
 if k % 2 == 0:
 sqrootdiva = repsqmodn(a, k/2, n)
 return((sqrootdiva*sqrootdiva) % n)
 sqrootdiva = repsqmodn(a, (k-1)/2, n)
 return((sqrootdiva*sqrootdiva*a) % n)